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Course info.

 Lecturer: Fatemeh Seyyedsalehi
 Contact: fateme.ssalehi@gmail.com

 Head TA: Maryam Rezaie
 Contact: ?

 Course website: On Quera - Github
 Tentative schedule, lectures
 Policies and rules
 Discussions
 HWs & solutions
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Grading policy

 Mid-term exam: 4
 Final exam: 6
 Homework (5 practical and conceptual HWs):     10+1
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Text books and related courses

 Books:
 Bishop, Christopher M. and Hugh Bishop, Deep Learning:

Foundations and Concepts, Springer
 Murphy, Kevin P, Probabilistic Machine Learning: Advanced Topics,

The MIT Press
 Tomczak, Jakub M., Deep Generative Modeling, Springer
 Koller D., Friedman N., Probabilistic Graphical Models, Principles and

Techniques, The MIT Press

 Courses with similar topics from other institutions:
 Stanford CS-236: Deep Generative Models
 CMU18-789:Deep Generative Models
 Washington CSE-599: Generative Models
 Berkeley CS 294-158: Deep Unsupervised Learning
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Introduction

 We should understand complex and unstructured 
phenomenon to be able to generate them

 Audio signals

 Natural images 

 Natural languages 
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Introduction

 Our tools to understand phenomenon is statistics
 In contrast to rule based techniques

 We use probability distributions to describe any thing
 Images
 Sentences
 Videos
 Audios
 …
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Statistical generative models

 Statistical generative models are learned from data
 Priors are always necessary, but there is a spectrum
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Statistical generative models

 A statistical generative model is a probability distribution
𝑃𝑃(𝑥𝑥)

 It is generative because sampling from p(x) generates new
images

8

𝑷𝑷𝜽𝜽(𝒙𝒙)



Statistical generative models

 We also can control the process of generation
 Conditional generative models
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Generative model examples
Image generation
 This person does not exist!
 https://thispersondoesnotexist.com/
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Generative model examples
Image generation
 OpenAI Dall-E
 https://openai.com/index/dall-e/

 Prompt: “A photorealistic image of an
astronaut riding a horse”

 Prompt: "A store front that has the word ‘OpenAI’ written
on it”
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Generative model examples
Video generation
 Prompt: “A couple sledding down a snowy hill on a tire

roman chariot style”

 Prompt: “Suddenly, the walls of the embankment broke
and there was a huge flood”
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Generative model examples
Video generation
 Deepfake
 https://deepfakesweb.com/projects
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Generative model examples
Code generation
 OpenAI Codex
 https://openai.com/index/openai-codex/
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Generative model examples
Language generation
 OpenAI ChatGPT
 https://openai.com/chatgpt/
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Reasoning
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Generative model examples
Speech generation

مدل متن به گفتار فارسی

ام به مولد، حضور در کلاس، مطالعه فردي و انجیادگیري براي موفقیت در درس "
 این حوزه امروزه یکی از موضوعات به روز هم در دنیاي. موقع تمرینات لازم است

".تحقیقات و هم در حوزه صنعت به شمار می رود
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Foundation models

 The term of foundation model describes large ML models trained
on a broad spectrum of generalized and unlabeled data
 The ability of performing a wide variety of general tasks such as

understanding language, generating text and images, and conversing
in natural language

 They changed the way data scientists approach machine learning
 Rather than developing from scratch, a foundation model can be

used as a starting point to develop ML models that power new
applications more quickly and cost-effectively.

 A good paper:
 “On the Opportunities and Risks of Foundation Models”
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Course overview

 (Probabilistic graphical models) Directed (Bayesian networks) and undirected (Markov random 
fields))
 Exact and approximate inference - Learning  from complete and incomplete data

 (Deep generative models) Autoregressive Models
 The NADE Framework
 Text modeling, LSTM and Transformers, Intro. to large language models

 Variational Autoencoders

 Generative Adversarial Nets
 f-GANs & Wasserstein GANs

 Generative Flow

 Energy-Based Models
 Stein's Method and Score Matching

 Langevin Dynamics and Diffusions

 Flow Matching

 LLM and LMM

 LLM emergent abilities and reasoning
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The generation problem

2020

𝑷𝑷𝜽𝜽(𝒙𝒙)

Real distributions 𝑷𝑷𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅(𝒙𝒙)

A family of distributions we can 
tackle with. Each instance of 𝜽𝜽
represent a specific distribution.

Searching the model family 
with a similarity metric

𝒔𝒔𝒔𝒔𝒔𝒔(𝑷𝑷𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒙𝒙 , 𝑷𝑷𝜽𝜽(𝒙𝒙))



The generation problem

 Once we learn 𝑷𝑷𝜽𝜽(𝒙𝒙),
 We can generate x ~ 𝑷𝑷𝜽𝜽 𝒙𝒙 that should look like a real sample
 We can approximate the function (density estimation

problem) the density of a sample, i.e. the value of 𝑷𝑷𝜽𝜽 𝒙𝒙
 Useful in anomaly detection
 However, generation is usually easier than density estimation

problem

 We can discover features of the space in an unsupervised
manner.
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Representation of model space

 We should represent distribution spaces in a way we
could tackle with
 Optimization, generation, density estimation, inference, …

 Our approaches
 Basic parametric distributions
 Probabilistic graphical models
 Deep neural networks

 Restricting to a parametric family of functions regularizes
the problem.
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Representation of model space
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Representation of model space
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Representation of model space
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Representation of model space
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Representation of model space

 By factorizing joint distributions with independency
assumption,
 We assume a structure for the problem domain
 We regularize the problem
 We simplify the hypothesis (distributions) space

 Probabilistic graphical models
 A way to represent a factorized joint distribution over a system of

random variables with independency assumptions
 We will introduce them first

 Deep neural network
 More complicated and descriptive tool for representation of a model

family.
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Next Session

 Probabilistic graphical models
 Directed (Bayesian networks)
 Undirected (Markov random fields)
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