

Introduction

22-808: Generative models
Sharif University of Technology
Fall 2025

Fatemeh Seyyedsalehi

Course info.

- ▶ Lecturer: Fatemeh Seyyedsalehi
 - ▶ Contact: fateme.ssalehi@gmail.com
- ▶ Head TA: Maryam Rezaie
 - ▶ Contact: ?
- ▶ Course website: On Quera - Github
 - ▶ Tentative schedule, lectures
 - ▶ Policies and rules
 - ▶ Discussions
 - ▶ HWs & solutions

Grading policy

- ▶ Mid-term exam: 4
- ▶ Final exam: 6
- ▶ Homework (5 practical and conceptual HWs): 10+1

Text books and related courses

- ▶ Books:
 - ▶ Bishop, Christopher M. and Hugh Bishop, Deep Learning: Foundations and Concepts, Springer
 - ▶ Murphy, Kevin P, Probabilistic Machine Learning: Advanced Topics, The MIT Press
 - ▶ Tomczak, Jakub M., Deep Generative Modeling, Springer
 - ▶ Koller D., Friedman N., Probabilistic Graphical Models, Principles and Techniques, The MIT Press
- ▶ Courses with similar topics from other institutions:
 - ▶ Stanford CS-236: Deep Generative Models
 - ▶ CMU18-789:Deep Generative Models
 - ▶ Washington CSE-599: Generative Models
 - ▶ Berkeley CS 294-158: Deep Unsupervised Learning

Introduction

- ▶ We should understand complex and unstructured phenomenon to be able to generate them

- ▶ Audio signals

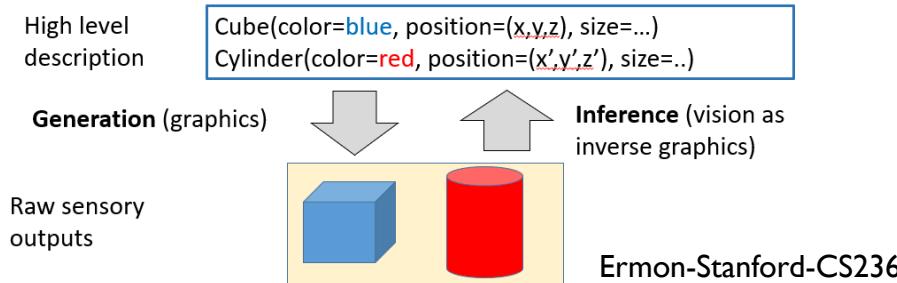
- ▶ Natural images

- ▶ Natural languages

به نام آنکه جان را فکرت آموخت

Introduction

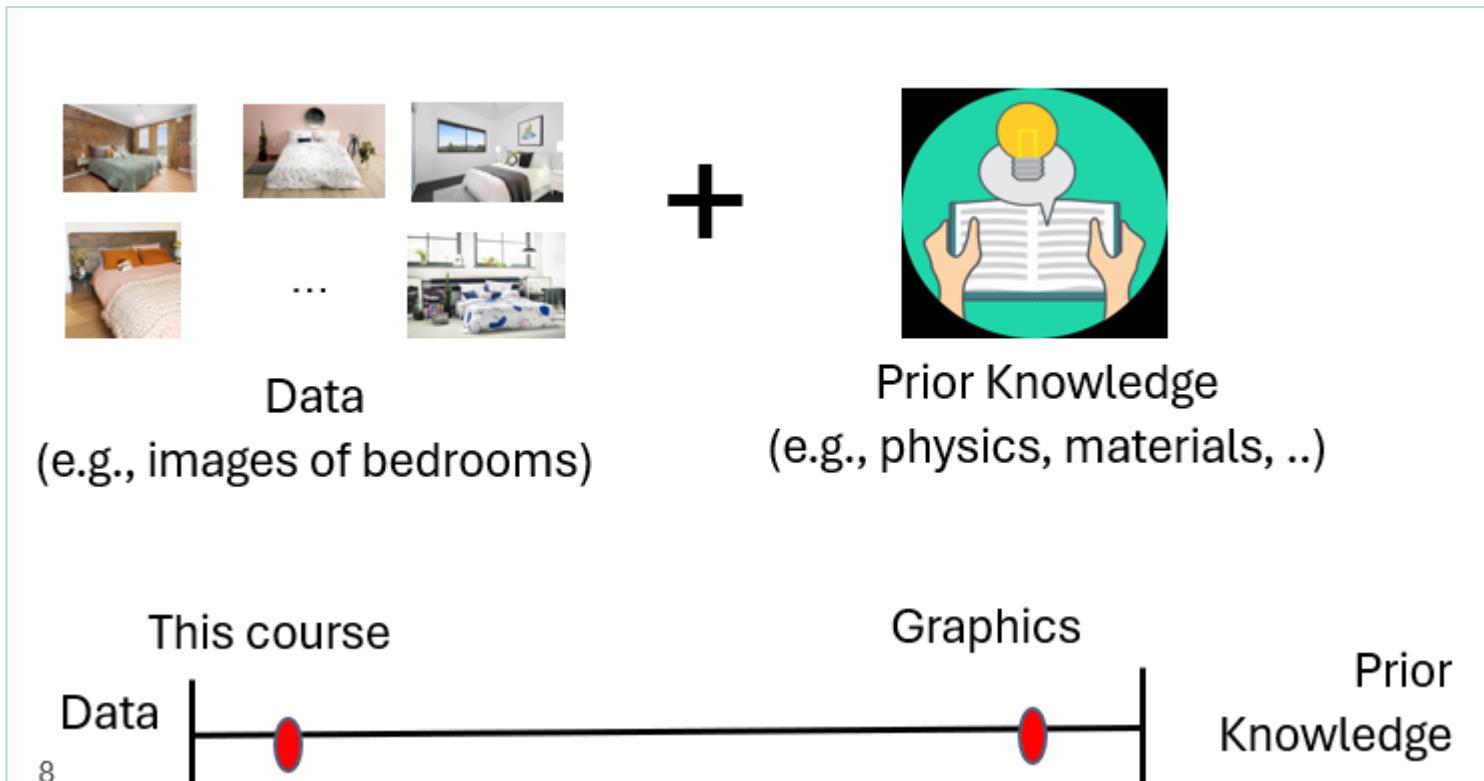
- ▶ Our tools to understand phenomenon is statistics
 - ▶ In contrast to rule based techniques



- ▶ We use probability distributions to describe any thing
 - ▶ Images
 - ▶ Sentences
 - ▶ Videos
 - ▶ Audios
 - ▶ ...

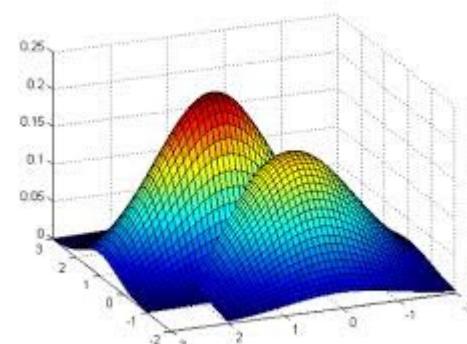
Statistical generative models

- ▶ Statistical generative models are learned from data
- ▶ Priors are always necessary, but there is a spectrum



Statistical generative models

- ▶ A statistical generative model is a probability distribution $P(x)$
- ▶ It is generative because **sampling from $p(x)$ generates new images**

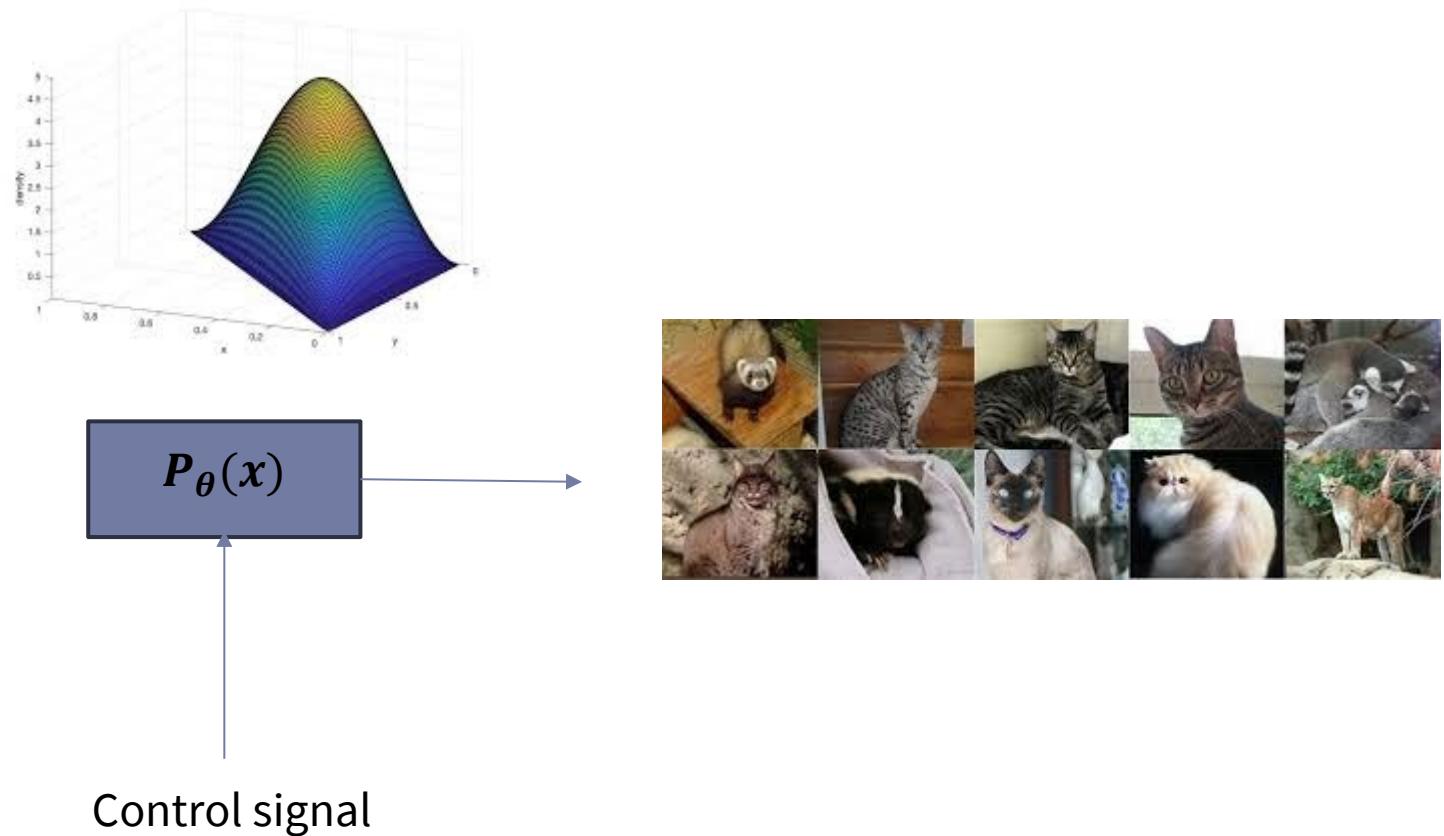


$$P_{\theta}(x)$$



Statistical generative models

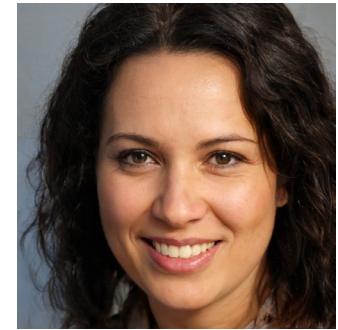
- ▶ We also can control the process of generation
 - ▶ Conditional generative models



Generative model examples

Image generation

- ▶ This person does not exist!
 - ▶ <https://thispersondoesnotexist.com/>



Generative model examples

Image generation

- ▶ OpenAI Dall-E
 - ▶ <https://openai.com/index/dall-e/>

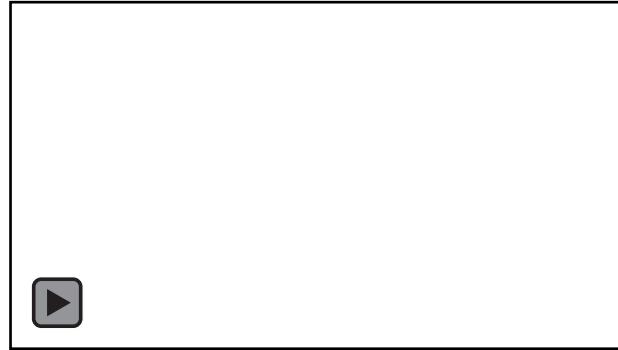
- ▶ Prompt: “A photorealistic image of an astronaut riding a horse”

- ▶ Prompt: "A store front that has the word 'OpenAI' written on it"

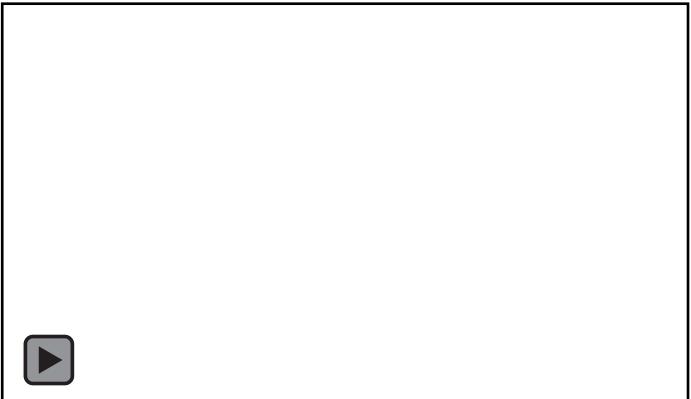
Generative model examples

Video generation

- ▶ Prompt: “A couple sledding down a snowy hill on a tire roman chariot style”



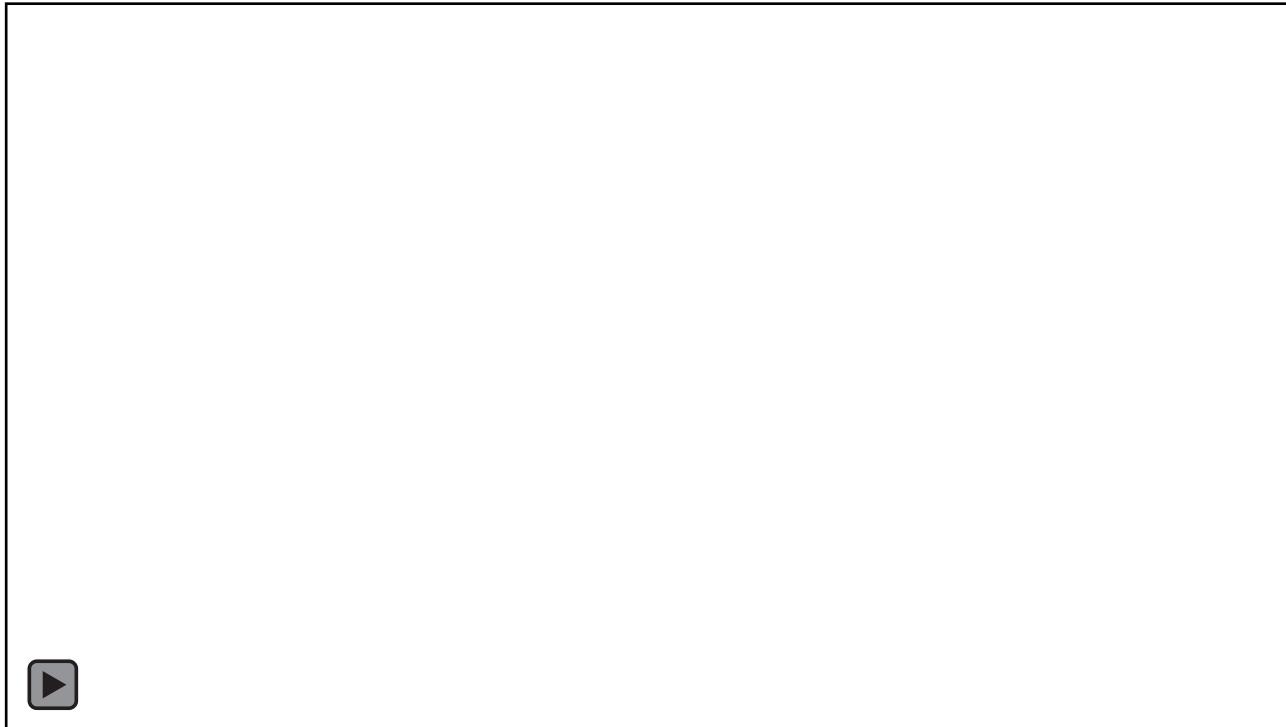
- ▶ Prompt: “Suddenly, the walls of the embankment broke and there was a huge flood”



Generative model examples

Video generation

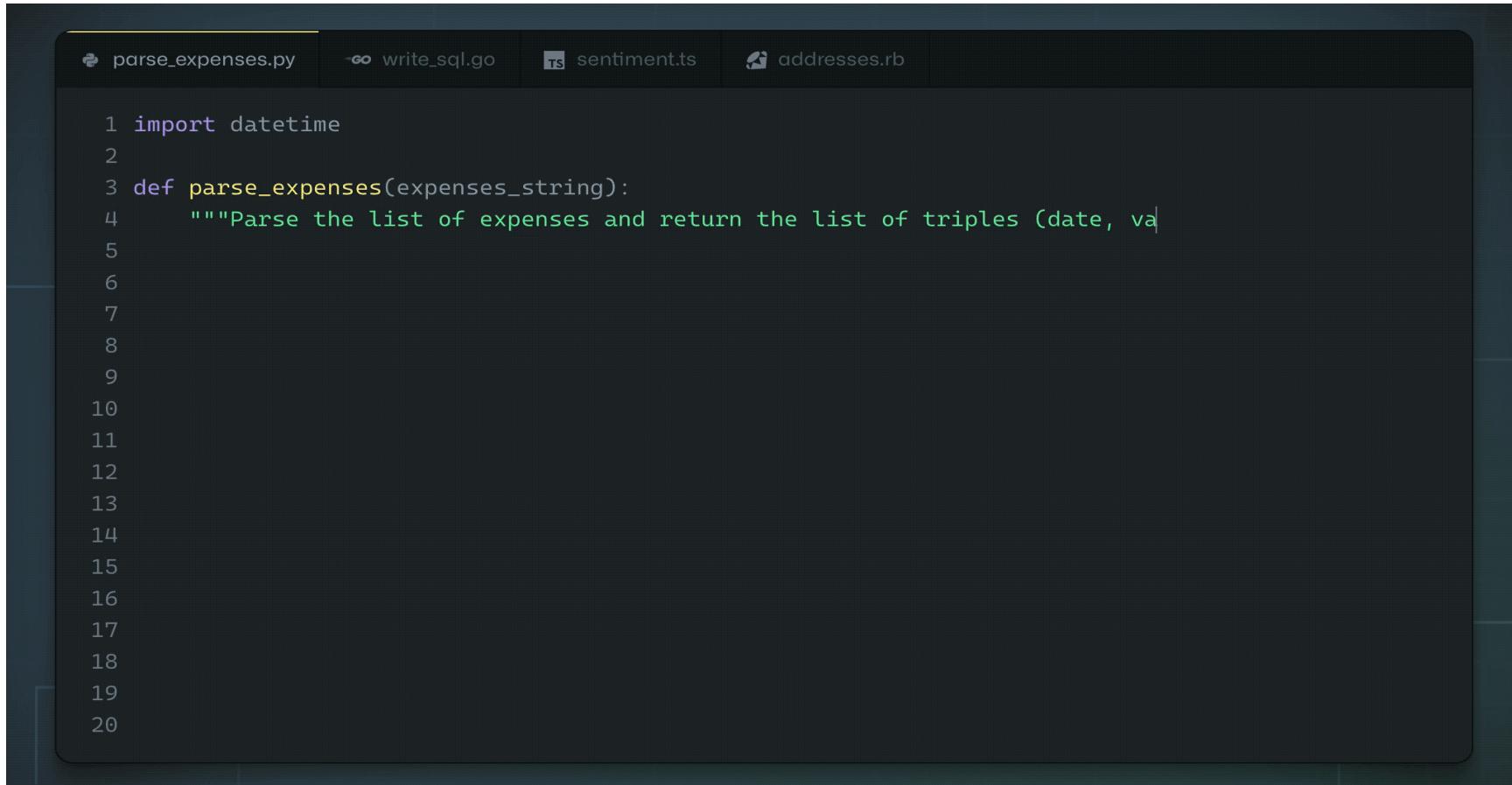
- ▶ Deepfake
 - ▶ <https://deepfakesweb.com/projects>



Generative model examples

Code generation

- ▶ OpenAI Codex
 - ▶ <https://openai.com/index/openai-codex/>



```
parse_expenses.py  write_sql.go  sentiment.ts  addresses.rb

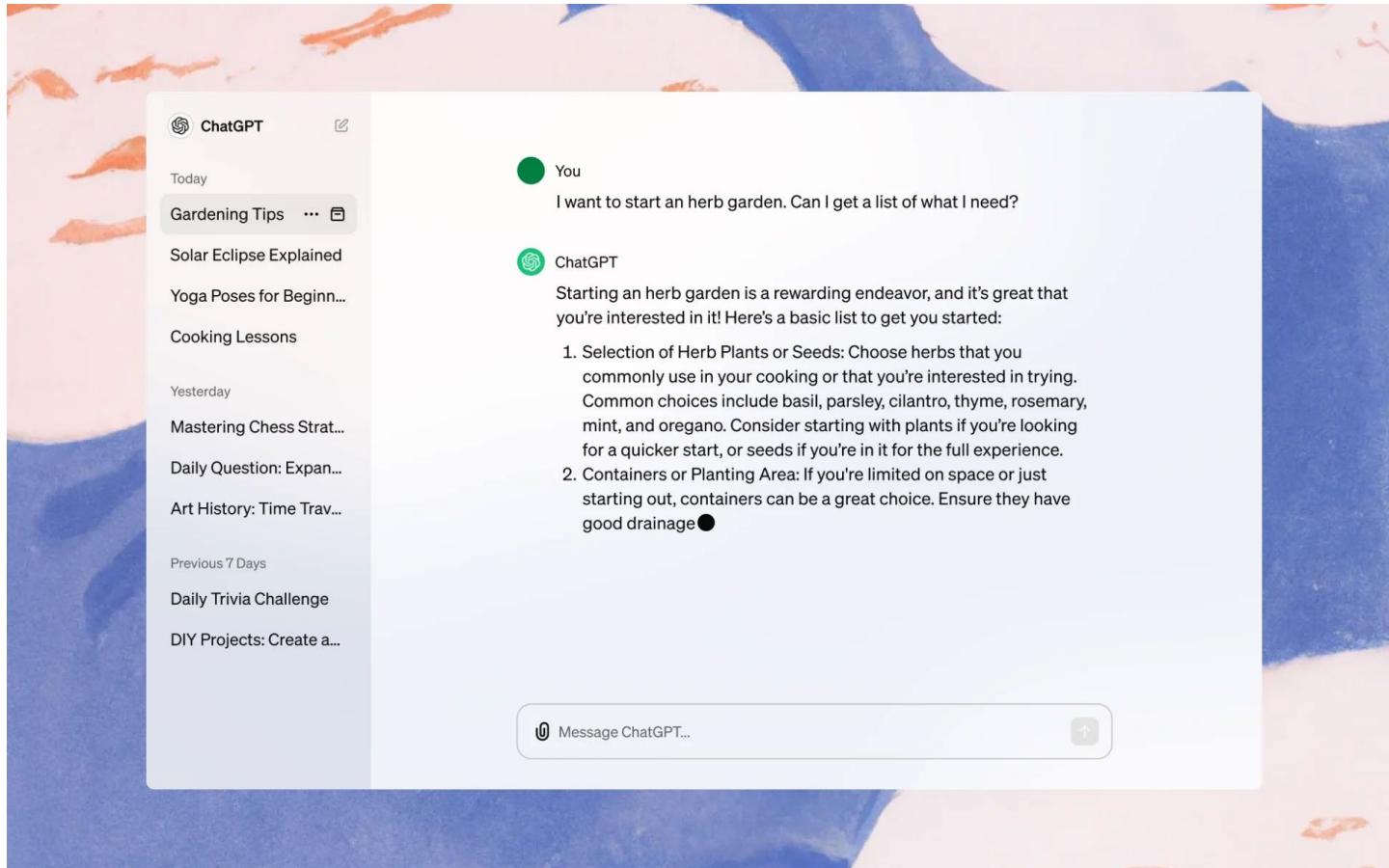
1 import datetime
2
3 def parse_expenses(expenses_string):
4     """Parse the list of expenses and return the list of triples (date, va
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
```

Generative model examples

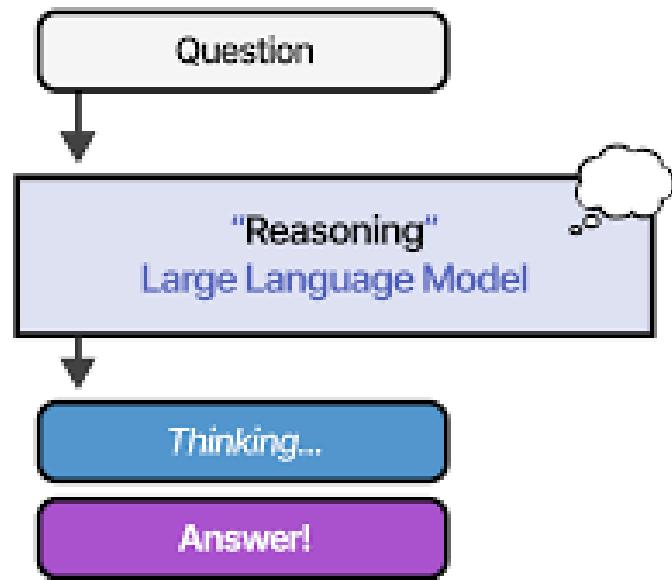
Language generation

▶ OpenAI ChatGPT

▶ <https://openai.com/chatgpt/>



Reasoning



Generative model examples

Speech generation

► مدل متن به گفتار فارسی

"برای موفقیت در درس یادگیری مولد، حضور در کلاس، مطالعه فردی و انجام به موقع تمرینات لازم است. این حوزه امروزه یکی از موضوعات به روز هم در دنیای تحقیقات و هم در حوزه صنعت به شمار می رود."

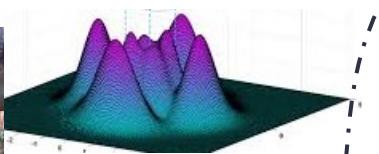
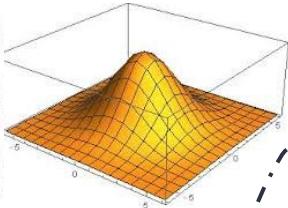
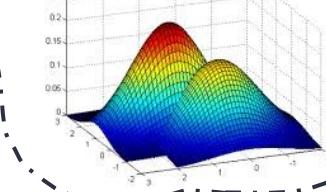
Foundation models

- ▶ The term of *foundation model* describes large ML models trained on a broad spectrum of generalized and unlabeled data
 - ▶ The ability of performing a wide variety of general tasks such as understanding language, generating text and images, and conversing in natural language
- ▶ They changed the way data scientists approach machine learning
 - ▶ Rather than developing from scratch, a foundation model can be used as a starting point to develop ML models that power new applications more quickly and cost-effectively.
- ▶ A good paper:
 - ▶ [“On the Opportunities and Risks of Foundation Models”](#)

Course overview

- ▶ **(Probabilistic graphical models)** Directed (Bayesian networks) and undirected (Markov random fields))
 - ▶ Exact and approximate inference - Learning from complete and incomplete data
- ▶ **(Deep generative models)** Autoregressive Models
 - ▶ The NADE Framework
 - ▶ Text modeling, LSTM and Transformers, Intro. to large language models
- ▶ Variational Autoencoders
- ▶ Generative Adversarial Nets
 - ▶ f-GANs & Wasserstein GANs
- ▶ Generative Flow
- ▶ Energy-Based Models
 - ▶ Stein's Method and Score Matching
- ▶ Langevin Dynamics and Diffusions
- ▶ Flow Matching
- ▶ LLM and LMM
- ▶ LLM emergent abilities and reasoning

The generation problem

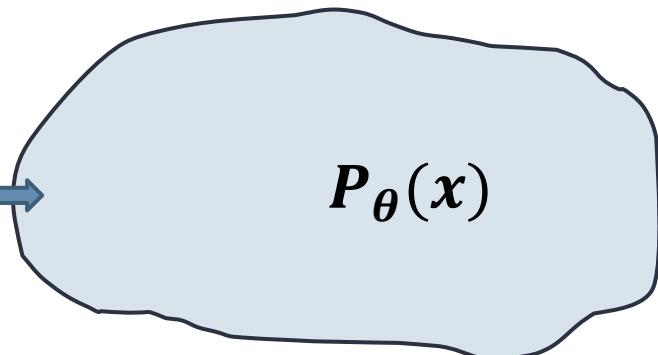


20 Real distributions $P_{data}(x)$

$$sim(P_{data}(x), P_{\theta}(x))$$

Searching the model family
with a similarity metric

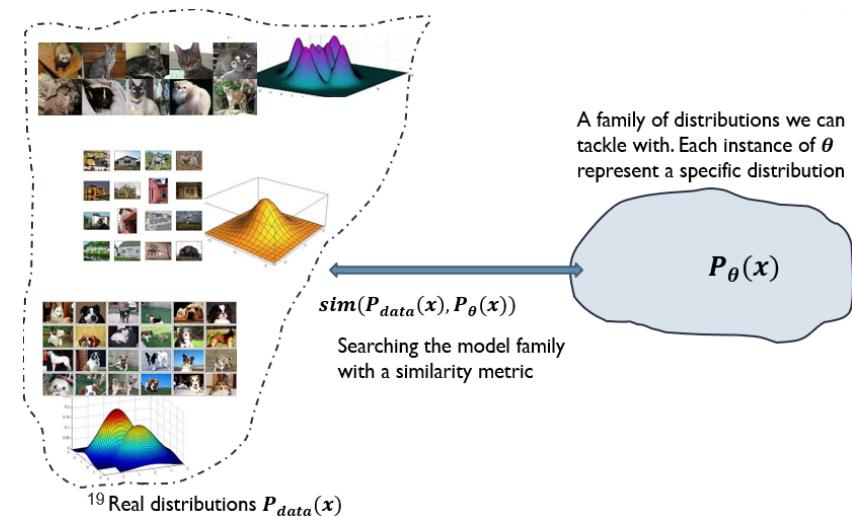
A family of distributions we can
tackle with. Each instance of θ
represent a specific distribution.



$$P_{\theta}(x)$$

The generation problem

- ▶ Once we learn $P_{\theta}(x)$,
 - ▶ We can **generate** $x \sim P_{\theta}(x)$ that should look like a real sample
 - ▶ We can approximate the function (**density estimation** problem) the density of a sample, i.e. the value of $P_{\theta}(x)$
 - ▶ Useful in anomaly detection
 - ▶ However, generation is usually easier than density estimation problem
 - ▶ We can discover features of the space in an unsupervised manner.



Representation of model space

- ▶ We should represent distribution spaces in a way we could tackle with
 - ▶ Optimization, generation, density estimation, inference, ...
- ▶ Our approaches
 - ▶ Basic parametric distributions
 - ▶ Probabilistic graphical models
 - ▶ Deep neural networks
- ▶ Restricting to a parametric family of functions regularizes the problem.

Representation of model space

- Bernoulli distribution: (biased) coin flip
 - $D = \{Heads, Tails\}$
 - Specify $P(X = Heads) = p$. Then $P(X = Tails) = 1 - p$.
 - Write: $X \sim Ber(p)$
 - Sampling: flip a (biased) coin
- Categorical distribution: (biased) m -sided dice
 - $D = \{1, \dots, m\}$
 - Specify $P(Y = i) = p_i$, such that $\sum p_i = 1$
 - Write: $Y \sim Cat(p_1, \dots, p_m)$
 - Sampling: roll a (biased) die

Representation of model space

- Suppose X_1, \dots, X_n are binary (Bernoulli) random variables, i.e., $\text{Val}(X_i) = \{0, 1\} = \{\text{Black, White}\}$.
- How many possible images (states)?

$$\underbrace{2 \times 2 \times \cdots \times 2}_{n \text{ times}} = 2^n$$

- Sampling from $p(x_1, \dots, x_n)$ generates an image
- How many parameters to specify the joint distribution $p(x_1, \dots, x_n)$ over n binary pixels?

$$2^n - 1$$

Representation of model space

- If X_1, \dots, X_n are independent, then

$$p(x_1, \dots, x_n) = p(x_1)p(x_2) \cdots p(x_n)$$

- How many possible states? 2^n
- How many parameters to specify the joint distribution $p(x_1, \dots, x_n)$?
 - How many to specify the marginal distribution $p(x_1)$? 1
- **2^n entries can be described by just n numbers** (if $|\text{Val}(X_i)| = 2$!)
- Independence assumption is too strong. Model not likely to be useful
 - For example, each pixel chosen independently when we sample from it.

Representation of model space

- Using Chain Rule

$$p(x_1, \dots, x_n) = p(x_1)p(x_2 | x_1)p(x_3 | x_1, x_2) \cdots p(x_n | x_1, \dots, x_{n-1})$$

- How many parameters? $1 + 2 + \cdots + 2^{n-1} = 2^n - 1$
 - $p(x_1)$ requires 1 parameter
 - $p(x_2 | x_1 = 0)$ requires 1 parameter, $p(x_2 | x_1 = 1)$ requires 1 parameter
Total 2 parameters.
 - ...
- $2^n - 1$ is still exponential, chain rule does not buy us anything.
- Now suppose $X_{i+1} \perp X_1, \dots, X_{i-1} | X_i$, then

$$\begin{aligned} p(x_1, \dots, x_n) &= p(x_1)p(x_2 | x_1)p(x_3 | \cancel{x_1}, x_2) \cdots p(x_n | \cancel{x_1}, \dots, \cancel{x_{i-1}}, x_{i+1}, \dots, x_{n-1}) \\ &= p(x_1)p(x_2 | x_1)p(x_3 | x_2) \cdots p(x_n | x_{n-1}) \end{aligned}$$

- How many parameters? $2n - 1$. Exponential reduction!

Representation of model space

- ▶ By factorizing joint distributions with independency assumption,
 - ▶ **We assume a structure for the problem domain**
 - ▶ We regularize the problem
 - ▶ We simplify the hypothesis (distributions) space
- ▶ Probabilistic graphical models
 - ▶ A way to represent a factorized joint distribution over a system of random variables with independency assumptions
 - ▶ We will introduce them first
- ▶ Deep neural network
 - ▶ More complicated and descriptive tool for representation of a model family.

Next Session

- ▶ Probabilistic graphical models
 - ▶ Directed (Bayesian networks)
 - ▶ Undirected (Markov random fields)