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Probabilistic graphical models

 A framework to tackle with complex joint distributions
 Representation

 Directed graphs: Bayesian network
 Undirected graphs: Markov random fields

 Learning
 Inference

 This lecture
 Representation in PGMs
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Probabilistic graphical models

 Searching in the fully generalized space of distributions
even in a simple probabilistic problem is impossible!

 Learn an effective and general technique for
parameterizing probability distributions using only a few
parameters.
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Probabilistic graphical models

 Independencies assumptions are useful
 Simplify representation and alleviate inference complexities

 Enable us to incorporate domain knowledge and
structures
 Modular combination of heterogeneous parts
 Combining data and knowledge (Bayesian philosophy)
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Bayesian networks

 Directed graphical models are tools to present family of
probability distributions that can be naturally described
using a directed acyclic graph.
 Nodes as random variables
 Edges as dependencies

 The intention behind these parameterization is chain
rule!
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Bayesian networks

 Bayesian networks represent a joint distribution in terms
of the graph structure and conditional probability
distributions (CPD)
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Bayesian networks
Discrete example
 When the variables are discrete, we may think of the

factors (CPDs) as probability tables, in which rows
correspond to assignments to parents and columns
correspond to values of the node.
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Bayesian networks
Continues example
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Bayesian networks

 A probability distribution is factorized over a DAG 𝐺𝐺 if it
can be decomposed into a product of factors specified by
𝐺𝐺.

 A Bayesian network represent distributions via products
of smaller, local conditional probability distributions.
 Introduces independency assumptions over variables

 𝐼𝐼(𝑝𝑝): denote the set of all independencies that hold for a
joint distribution 𝑝𝑝.
 𝑝𝑝 𝑥𝑥, 𝑦𝑦 = 𝑝𝑝 𝑥𝑥 𝑝𝑝 𝑦𝑦 → 𝑥𝑥 ⊥ 𝑦𝑦 ∈ 𝐼𝐼(𝑝𝑝)
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Bayesian networks

 Let 𝐺𝐺 be a graph over 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 distribution 𝑝𝑝
factorizes over 𝐺𝐺 if:

𝑝𝑝 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 = �
𝑖𝑖=1

𝑛𝑛

𝑝𝑝(𝑥𝑥𝑖𝑖|𝑝𝑝𝑝𝑝(𝑥𝑥𝑖𝑖))

 𝑝𝑝𝑝𝑝(.): parents of a node

 Factorization ⇔ Independence
 If 𝑝𝑝 factorizes over 𝐺𝐺, then any variable in 𝑝𝑝 is independent of

its non-descendants given its parents (in 𝐺𝐺)
 If any variable in the distribution 𝑝𝑝 is independent of its non-

descendants given its parents (in the graph 𝐺𝐺) then 𝑝𝑝 factorizes
over 𝐺𝐺
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Independencies described by directed graphs
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Independencies described by directed graphs
D-separation
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 Considering three disjoint sets of nodes:
 A, B, C

 A is d-separated from B by C if all paths between A and B
are blocked by C
 There is no active path between A and B 

 𝐴𝐴 is d-separated from 𝐵𝐵 by 𝐶𝐶 if 𝑨𝑨 ⊥ 𝑩𝑩|𝑪𝑪



Path blocking

 Head to tail during path

 Tail to tail during path

 Head to head, visiting a v-structure
 Z and none of its descendants are observed

13



Independencies described by directed graphs

A simple d-separation simulator
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Markov blanket of a node

 A variable is conditionally independent of all other
variables given its Markov blanket

 Markov blanket if a set A is U when:
 The minimal set of nodes such that A is independent from the

rest of the graph if U is observed

 Markov blanket of a node:
 All parents
 All children
 Co-parents of children
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Markov random networks

 Undirected graphs for representation of joint
distributions
 Unlike in the directed case, we are not saying anything about

how one variable is generated from another set of variables (as
a conditional probability distribution would do).
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Markov random networks

 They specify dependent variables (but no causality
relations) and define the strength of their interactions.

 This defines an energy landscape over the space of
possible assignments and we convert this energy to a
probability via the normalization constant.
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MRF factorization

 Clique: subsets of nodes in the graph that are fully
connected (complete subgraph)

 Maximal clique: no superset of the nodes in a clique are
also compose a clique

 Factors are functions of the variables in cliques
 To reduce the number of factors we allow factors only for

maximal cliques
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MRF factorization

 A distribution 𝑝𝑝(. ) is factorized over an MRF G if it can be
parameterized as follows,

𝑝𝑝 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 =
1
𝑍𝑍�

𝑖𝑖=1

𝑘𝑘

𝜙𝜙𝑖𝑖(𝐷𝐷𝑖𝑖)

𝑍𝑍 = �
𝑋𝑋

�
𝑖𝑖=1

𝑘𝑘

𝜙𝜙𝑖𝑖(𝐷𝐷𝑖𝑖)

where each 𝐷𝐷𝑖𝑖 is a complete subgraph of G

 When there is no direct edge between two nodes, 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗, there
exist at least the following conditional independency between them:

𝑥𝑥𝑖𝑖 ⊥ 𝑥𝑥𝑗𝑗| 𝑋𝑋/{𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗}
 To hold this independency in 𝑝𝑝 . , these two variables are not appeared

in the domain of a same factor
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MRF factorization

 Potential functions:
 The function over each clique (factor)

 Potential functions and cliques in the graph completely
determine the joint distribution.

 Potentials are not necessarily marginal or conditional
distributions
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Markov random networks

 Formal definition

21



Independencies in MRFs

 A simple rule:
 Variables 𝑥𝑥 and 𝑦𝑦 are dependent if they are connected by a

path of unobserved variables.

 Markov blanket in MRFs:
 In both BNs and MRFs
 In MRFs: simply all neighbors of a node
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MRF example:
Image denoising

 Pixels are noisy observed variables: 𝑦𝑦𝑖𝑖
 We assume the noise free image as a latent behind the

observed pixels: 𝑥𝑥𝑖𝑖
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MRFs compared to BNs

 Pros.
 They can be applied to a wider range of problems in which there is 

no natural directionality associated with variable dependencies.
 Undirected graphs can succinctly express certain dependencies that 

Bayesian nets cannot easily describe (although the converse is also 
true)

 Cons.
 Computing the normalization constant Z requires summing over a 

potentially exponential number of assignments. 
 NP-hard; many undirected models will be intractable and will require 

approximation techniques.
 Difficult to interpret.
 It is much easier to generate data from a Bayesian network
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Hybrid graphs

 Partially directed acyclic graphs
 A combination of both directed and undirected graphs
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Plate notation

 Plate notation is a rectangle in graphical model
representation which shows random variables generated
from the same distribution

 Plate notation present a replication of random variables
that share same parameters
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Generative vs. discriminative models

 In generative models we describe the generation process
of observed variables

 In discriminative models, we learn how samples are
discriminated
 Decision boundaries in classifiers
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Generative vs. discriminative models
Example

 Generative classifier 𝜋𝜋
 We should learn 𝑝𝑝 𝑦𝑦 , 𝑝𝑝(𝑥𝑥|𝑦𝑦)

𝜃𝜃
 Discriminative classifier
 We should learn 𝑝𝑝 𝑥𝑥 , 𝑝𝑝(𝑦𝑦|𝑥𝑥)
 However, for classification task
𝑝𝑝 𝑦𝑦 𝑥𝑥 is the only thing we need.

 Less parameters are needed to be learned 𝜃𝜃

 When we only need to discriminate
Between samples, discriminative models are preferred.
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Generative PGM example
Hyperspectral unmixing with PGMs
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 A generative model
 K = number of patches
 P = number of pixels in each patch
 N = the dimension of vector A



Next topic

 Probabilistic graphical models
 Exact and approximate inference
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