

Probabilistic graphical models Directed (BNs) and undirected (MRFs) graphs

22-808: Generative models
Sharif University of Technology
Fall 2025

Fatemeh Seyyedsalehi

Probabilistic graphical models

- ▶ A framework to tackle with complex joint distributions
 - ▶ Representation
 - ▶ Directed graphs: Bayesian network
 - ▶ Undirected graphs: Markov random fields
 - ▶ Learning
 - ▶ Inference
- ▶ This lecture
 - ▶ Representation in PGMs

Probabilistic graphical models

- ▶ Searching in the fully generalized space of distributions even in a simple probabilistic problem is impossible!
- ▶ Learn an effective and general technique for parameterizing probability distributions using only a few parameters.

Probabilistic graphical models

- ▶ Independencies assumptions are useful
 - ▶ Simplify representation and alleviate inference complexities
- ▶ Enable us to incorporate domain knowledge and structures
 - ▶ Modular combination of heterogeneous parts
 - ▶ Combining data and knowledge (Bayesian philosophy)

Bayesian networks

- ▶ Directed graphical models are tools to present family of probability distributions that can be naturally described using a directed acyclic graph.
 - ▶ Nodes as random variables
 - ▶ Edges as dependencies
- ▶ The intention behind these parameterization is chain rule!

$$p(x_1, x_2, \dots, x_n) = p(x_1)p(x_2 \mid x_1) \cdots p(x_n \mid x_{n-1}, \dots, x_2, x_1)$$

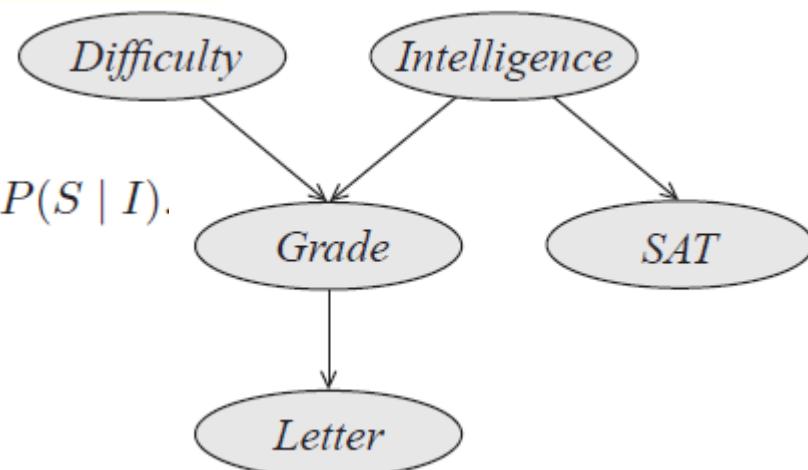
Bayesian networks

- ▶ Bayesian networks represent a joint distribution in terms of **the graph structure and conditional probability distributions (CPD)**

$$G = (V, E)$$

- A random variable x_i for each node $i \in V$.
- One conditional probability distribution (CPD) $p(x_i | x_{A_i})$ per node, specifying the probability of x_i conditioned on its parents' values.

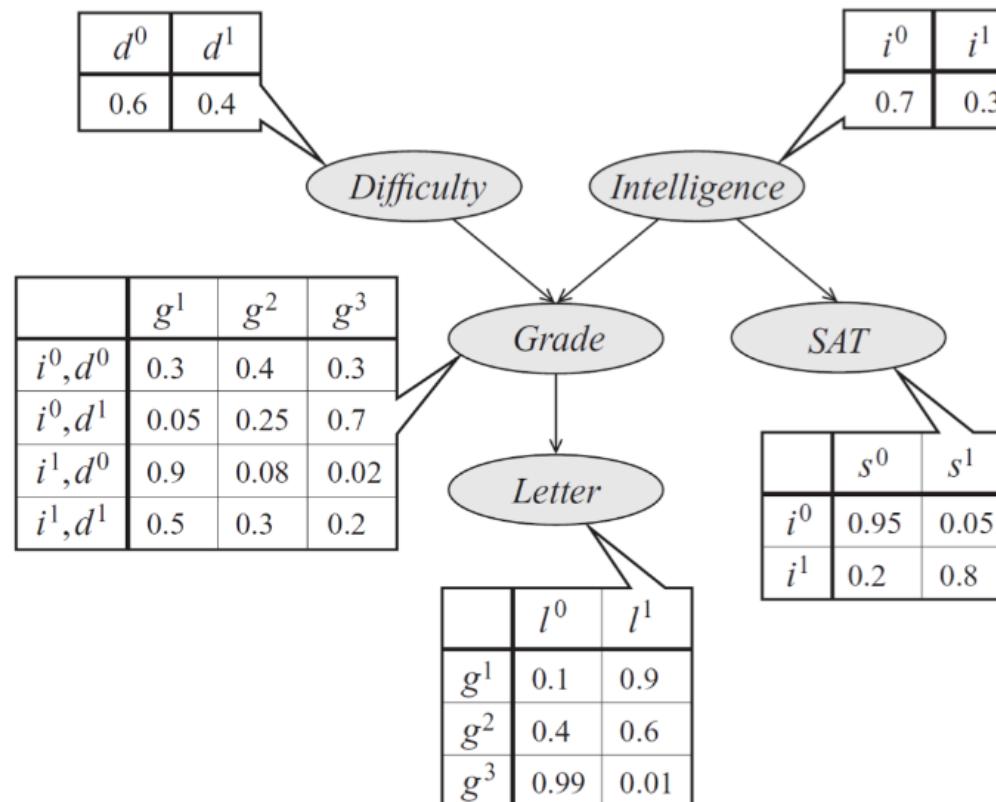
$$P(I, D, G, L, S) = P(I)P(D)P(G | I, D)P(L | G)P(S | I).$$



Bayesian networks

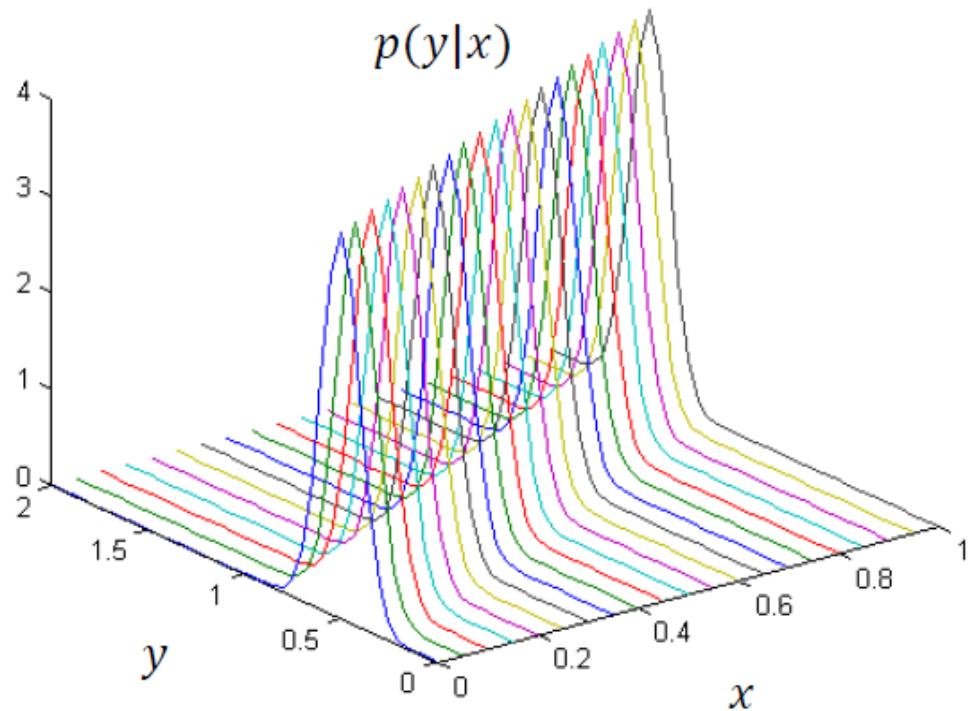
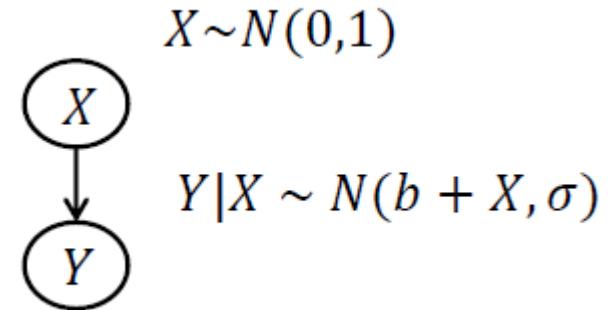
Discrete example

- When the variables are discrete, we may think of the factors (CPDs) as *probability tables*, in which rows correspond to assignments to parents and columns correspond to values of the node.



Bayesian networks

Continues example



$$b = 0.5$$

$$\sigma = 0.1$$

Bayesian networks

- ▶ A probability distribution is factorized over a *DAG* G if it can be decomposed into a product of factors specified by G .
- ▶ A Bayesian network represent distributions via products of smaller, local conditional probability distributions.
 - ▶ Introduces independency assumptions over variables
- ▶ $I(p)$: denote the set of all independencies that hold for a joint distribution p .
 - ▶ $p(x, y) = p(x)p(y) \rightarrow x \perp y \in I(p)$

Bayesian networks

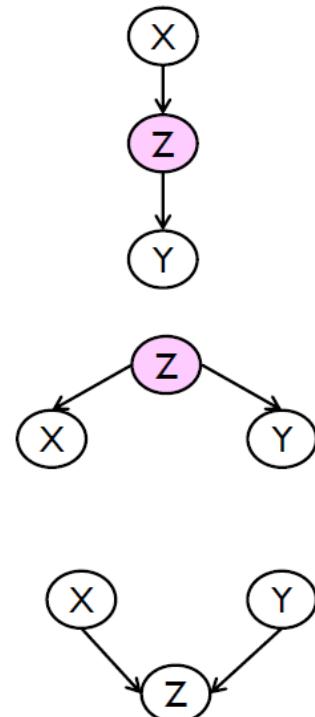
- ▶ Let G be a graph over x_1, x_2, \dots, x_n distribution p factorizes over G if:

$$p(x_1, x_2, \dots, x_n) = \prod_{i=1}^n p(x_i | pa(x_i))$$

- ▶ $pa(\cdot)$: parents of a node
- ▶ Factorization \Leftrightarrow Independence
 - ▶ If p factorizes over G , then any variable in p is independent of its non-descendants given its parents (in G)
 - ▶ If any variable in the distribution p is independent of its non-descendants given its parents (in the graph G) then p factorizes over G

Independencies described by directed graphs

- *Common parent*. If G is of the form $X \leftarrow Z \rightarrow Y$, and Z is observed, then $X \perp Y | Z$. However, if Z is unobserved, then $X \not\perp Y$. Intuitively this stems from the fact that Z contains all the information that determines the outcomes of X and Y ; once it is observed, there is nothing else that affects these variables' outcomes.
- *Cascade*: If G equals $X \rightarrow Z \rightarrow Y$, and Z is again observed, then, again $X \perp Y | Z$. However, if Z is unobserved, then $X \not\perp Y$. Here, the intuition is again that Z holds all the information that determines the outcome of Y ; thus, it does not matter what value X takes.
- *V-structure* (also known as *explaining away*): If G is $X \rightarrow Z \leftarrow Y$, then knowing Z couples X and Y . In other words, $X \perp Y$ if Z is unobserved, but $X \not\perp Y | Z$ if Z is observed.



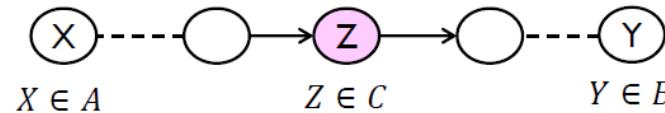
Independencies described by directed graphs

D-separation

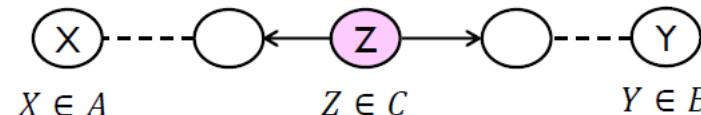
- ▶ Considering three disjoint sets of nodes:
 - ▶ A, B, C
- ▶ A is **d-separated** from B by C if all paths between A and B are blocked by C
 - ▶ There is no **active path** between A and B
- ▶ A is d-separated from B by C if $A \perp B | C$

Path blocking

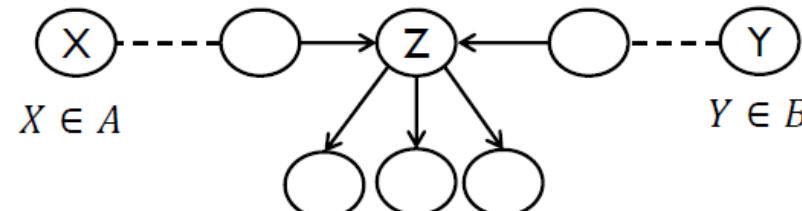
- ▶ Head to tail during path



- ▶ Tail to tail during path

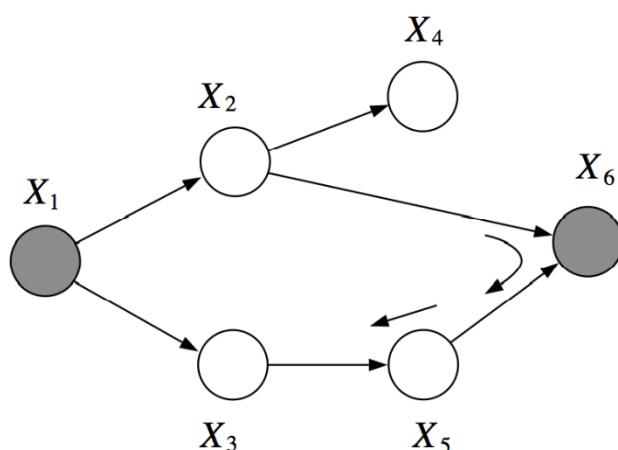
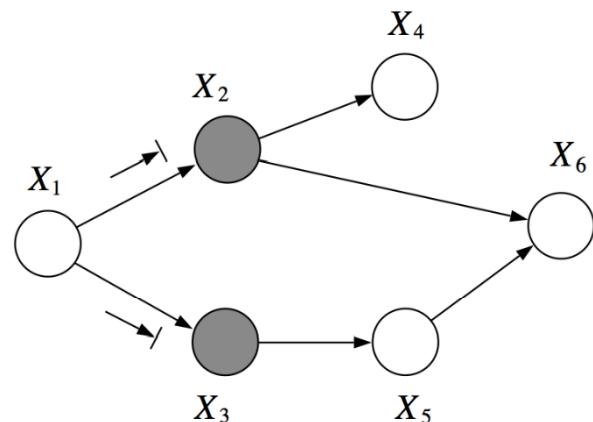


- ▶ Head to head, visiting a v-structure
- ▶ Z and none of its descendants are observed



Independencies described by directed graphs

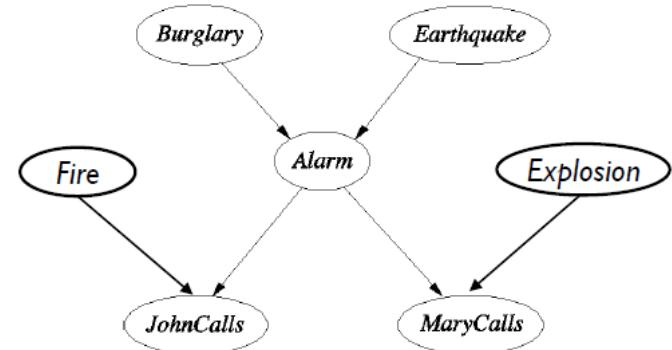
For example, in the graph below, X_1 and X_6 are d -separated given X_2, X_3 . However, X_2, X_3 are not d -separated given X_1, X_6 , because we can find an active path (X_2, X_6, X_5, X_3)



A simple d-separation simulator 😊

Markov blanket of a node

- ▶ A variable is conditionally independent of all other variables given its **Markov blanket**
- ▶ Markov blanket if a set A is U when:
 - ▶ The minimal set of nodes such that A is independent from the rest of the graph if U is observed
- ▶ Markov blanket of a node:
 - ▶ All parents
 - ▶ All children
 - ▶ Co-parents of children



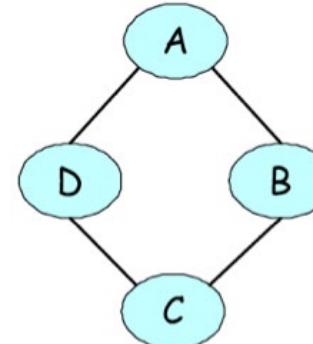
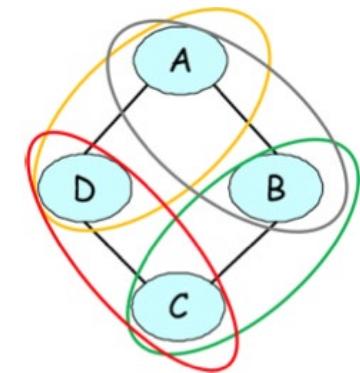
Markov random networks

- ▶ Undirected graphs for representation of joint distributions
- ▶ Unlike in the directed case, we are not saying anything about how one variable is generated from another set of variables (as a conditional probability distribution would do).

$$\tilde{p}(A, B, C, D) = \phi(A, B)\phi(B, C)\phi(C, D)\phi(D, A)$$

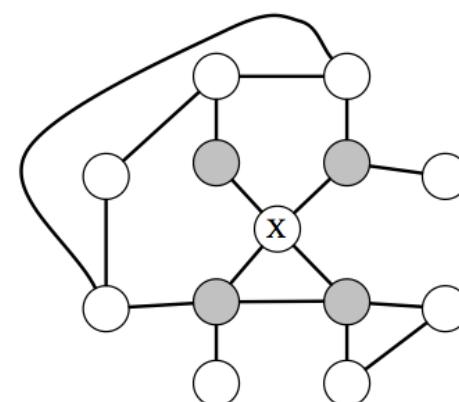
$$\phi(X, Y) = \begin{cases} 10 & \text{if } X = Y = 1 \\ 5 & \text{if } X = Y = 0 \\ 1 & \text{otherwise.} \end{cases}$$

$$p(A, B, C, D) = \frac{1}{Z} \tilde{p}(A, B, C, D)$$



Markov random networks

- ▶ They specify dependent variables (but no causality relations) and define the strength of their interactions.
- ▶ This defines an energy landscape over the space of possible assignments and we convert this energy to a probability via the normalization constant.

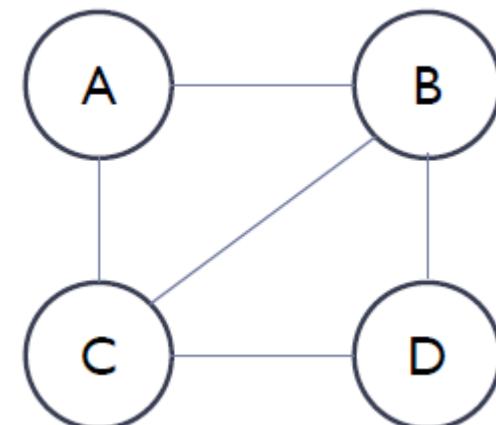


MRF factorization

- ▶ **Clique**: subsets of nodes in the graph that are fully connected (complete subgraph)
- ▶ **Maximal clique**: no superset of the nodes in a clique are also compose a clique
- ▶ Factors are functions of the variables in cliques
 - ▶ To reduce the number of factors we allow factors only for maximal cliques

Cliques: $\{A, B, C\}$, $\{B, C, D\}$, $\{A, B\}$, $\{A, C\}$, $\{B, C\}$, $\{B, D\}$, $\{C, D\}$, $\{A\}$, $\{B\}$, $\{C\}$, $\{D\}$

Max-cliques: $\{A, B, C\}$, $\{B, C, D\}$



MRF factorization

- ▶ A distribution $p(\cdot)$ is factorized over an MRF G if it can be parameterized as follows,

$$p(x_1, x_2, \dots, x_n) = \frac{1}{Z} \prod_{i=1}^k \phi_i(D_i)$$
$$Z = \sum_X \prod_{i=1}^k \phi_i(D_i)$$

where each D_i is a **complete subgraph** of G

- ▶ When there is no direct edge between two nodes, x_i and x_j , there exist at least the following conditional independency between them:

$$x_i \perp x_j \mid X / \{x_i, x_j\}$$

- ▶ To hold this independency in $p(\cdot)$, these two variables are not appeared in the domain of a same factor

MRF factorization

- ▶ Potential functions:
 - ▶ The function over each clique (factor)
- ▶ Potential functions and cliques in the graph completely determine the joint distribution.
- ▶ Potentials are not necessarily marginal or conditional distributions

Markov random networks

► Formal definition

A Markov Random Field (MRF) is a probability distribution p over variables x_1, \dots, x_n defined by an *undirected* graph G in which nodes correspond to variables x_i . The probability p has the form

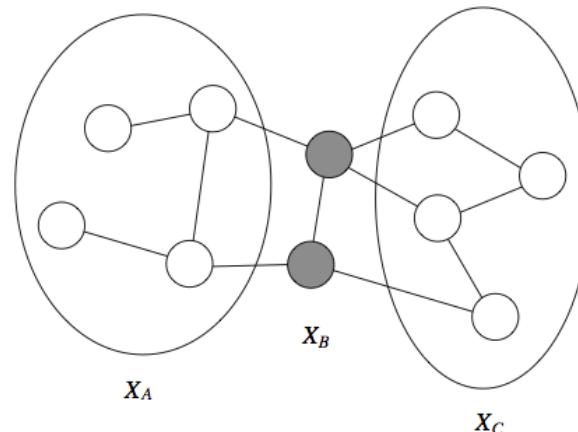
$$p(x_1, \dots, x_n) = \frac{1}{Z} \prod_{c \in C} \phi_c(x_c),$$

where C denotes the set of *cliques* (i.e., fully connected subgraphs) of G , and each *factor* ϕ_c is a non-negative function over the variables in a clique. The *partition function*

$$Z = \sum_{x_1, \dots, x_n} \prod_{c \in C} \phi_c(x_c)$$

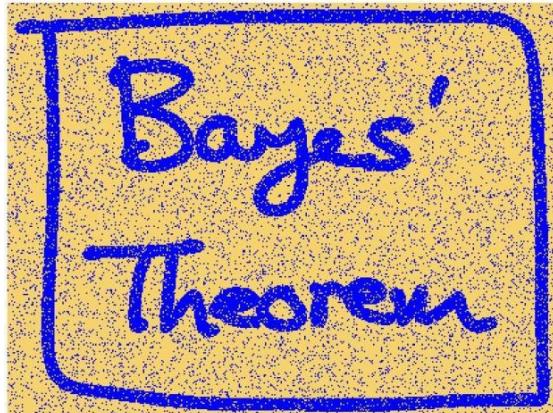
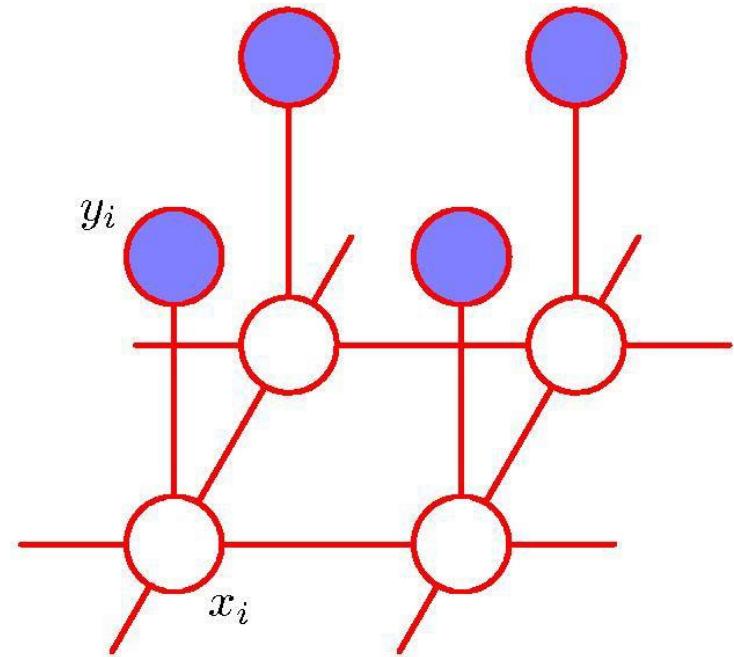
Independencies in MRFs

- ▶ A simple rule:
 - ▶ Variables x and y are dependent if they are connected by a path of unobserved variables.
- ▶ Markov blanket in MRFs:
 - ▶ In both BNs and MRFs
 - ▶ In MRFs: simply all neighbors of a node



MRF example: Image denoising

- ▶ Pixels are noisy observed variables: y_i
- ▶ We assume the noise free image as a latent behind the observed pixels: x_i



MRFs compared to BNs

- ▶ Pros.
 - ▶ They can be applied to a wider range of problems in which there is no natural directionality associated with variable dependencies.
 - ▶ Undirected graphs can succinctly express certain dependencies that Bayesian nets cannot easily describe (although the converse is also true)
- ▶ Cons.
 - ▶ Computing the normalization constant Z requires summing over a potentially exponential number of assignments.
 - ▶ NP-hard; many undirected models will be intractable and will require approximation techniques.
 - ▶ Difficult to interpret.
 - ▶ It is much easier to generate data from a Bayesian network

Hybrid graphs

- ▶ Partially directed acyclic graphs
 - ▶ A combination of both directed and undirected graphs

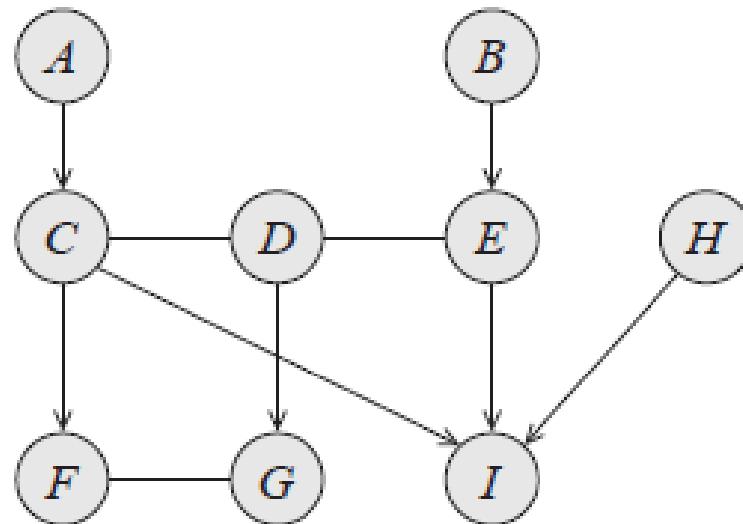
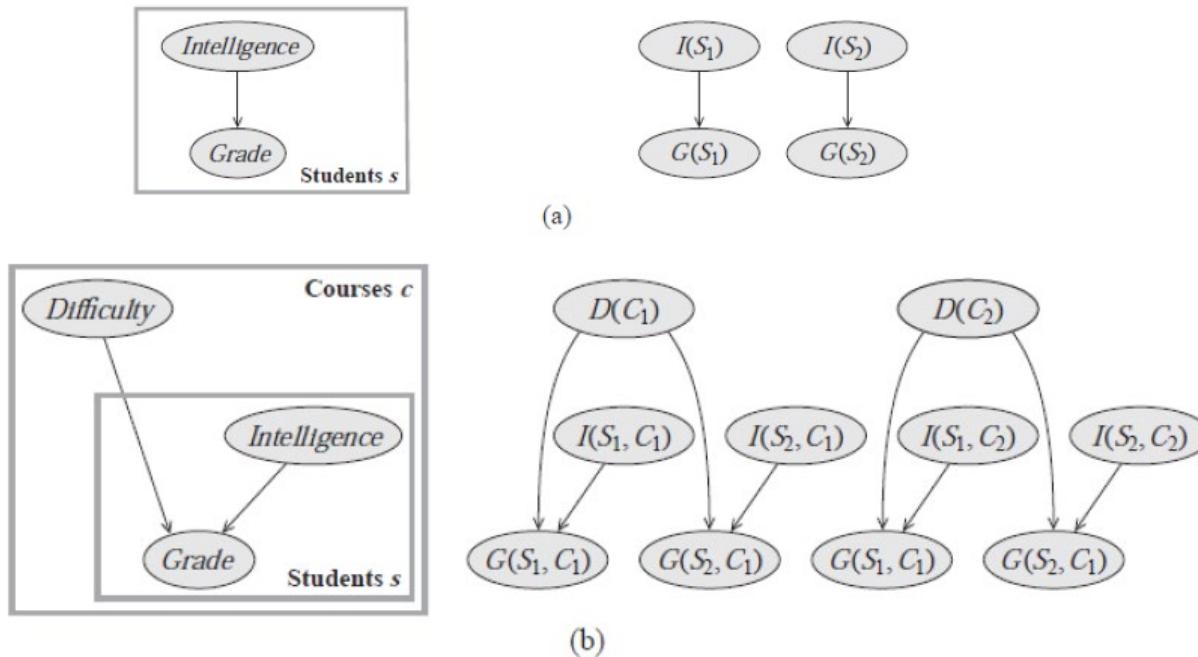


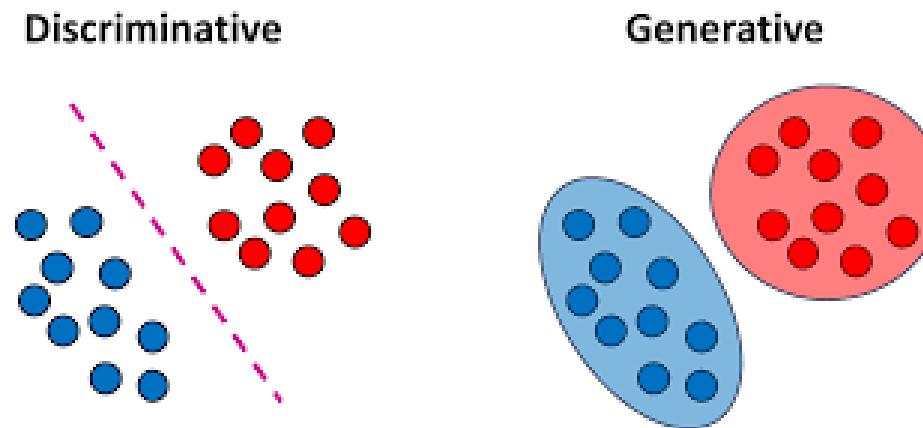
Plate notation

- ▶ Plate notation is a rectangle in graphical model representation which shows random variables generated from the same distribution
- ▶ Plate notation present a replication of random variables that share same parameters



Generative vs. discriminative models

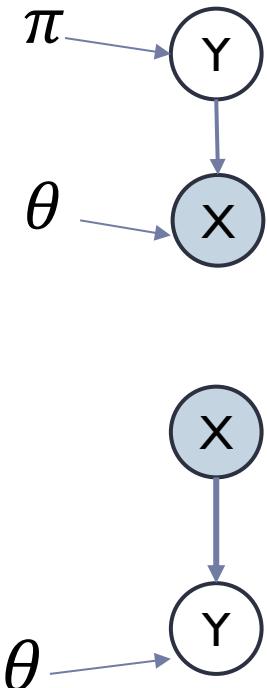
- ▶ In generative models we describe the generation process of observed variables
- ▶ In discriminative models, we learn how samples are discriminated
 - ▶ Decision boundaries in classifiers



Generative vs. discriminative models

Example

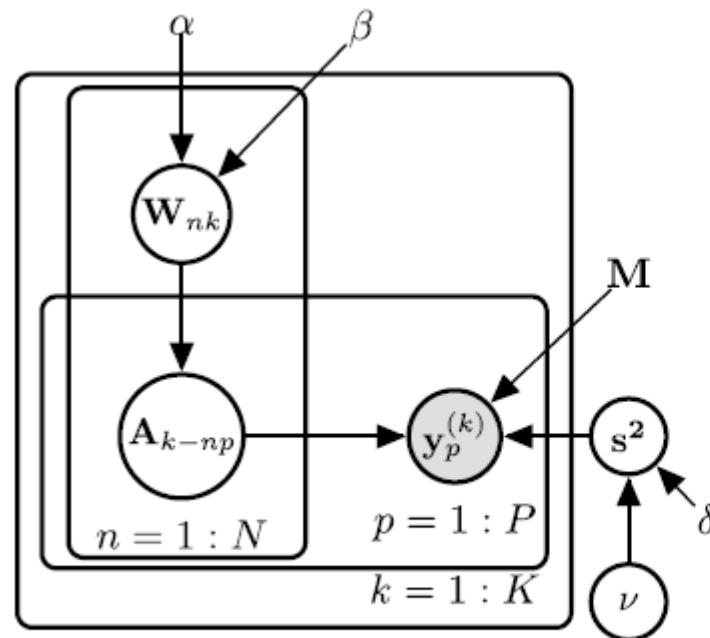
- ▶ Generative classifier
 - ▶ We should learn $p(y)$, $p(x|y)$
- ▶ Discriminative classifier
 - ▶ We should learn $p(x)$, $p(y|x)$
 - ▶ However, for classification task $p(y|x)$ is the only thing we need.
 - ▶ Less parameters are needed to be learned
- ▶ When we only need to discriminate Between samples, discriminative models are preferred.



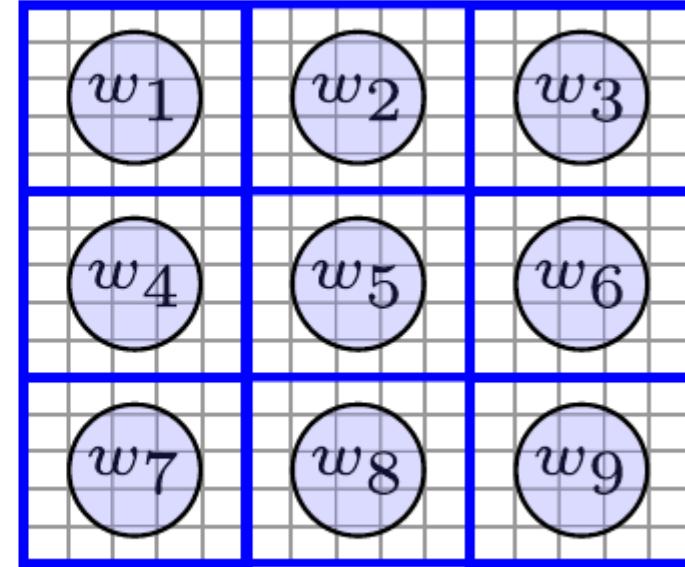
Generative PGM example

Hyperspectral unmixing with PGMs

- ▶ A generative model
 - ▶ K = number of patches
 - ▶ P = number of pixels in each patch
 - ▶ N = the dimension of vector A



(a)



(b)

Next topic

- ▶ Probabilistic graphical models
 - ▶ Exact and approximate inference