

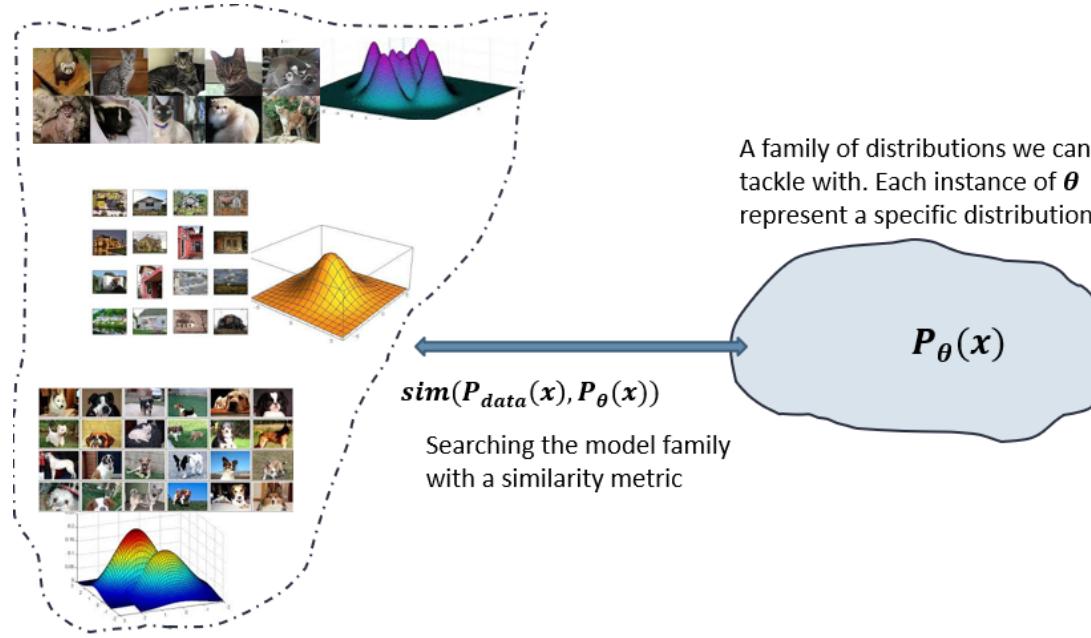
Probabilistic graphical models

Learning from data

22-808: Generative models
Sharif University of Technology
Fall 2025

Fatemeh Seyyedsalehi

Recap



- ▶ We need a framework to interact with distributions for statistical generative models.
 - ▶ Probabilistic generative models
 - ▶ Representation – Inference and Sampling – **Learning (today)**
 - ▶ Deep generative models

Learning in PGMs

- ▶ Let's assume that the real data is generated from a distribution p_{data}
 - ▶ A set of independent, identically distributed (i.i.d.) training samples, $\mathcal{D} = \{x^1, x^2, \dots, x^n\}$ is available.
 - ▶ Each sample is an assignment of values to (a subset of) the variables, e.g. pixel intensities.
- ▶ We are also given a family of models p_θ , and our task is to learn some “good” distribution in this set
 - ▶ For example, p_θ could be all Bayes nets with a given graph structure, for all possible choices of the CPDs

Learning in PGMs

- ▶ We want to learn the full distribution so that later we can answer any probabilistic inference query
- ▶ Learning in PGMs
 - ▶ Parameter learning ←
 - ▶ Learning parameters of potential functions and conditional probability distributions (CPDs)
 - ▶ Structure learning
 - ▶ For fixed nodes, learning edges!

Learning in PGMs

Parameter learning

- ▶ Given a set of i.i.d. training samples $\mathcal{D} = \{x^1, x^2, \dots, x^n\}$, the goal is learning parameters of factors, i.e. CPDs and potentials.
- ▶ We assume that the structure of the graphical model is known.
- ▶ Each sample $x^i = [x_1^i, x_2^i, \dots, x_m^i]$ is a vector of random variables in the graph.
 - ▶ **First, we assume data is completely observed**
- ▶ A parametric density estimation problem
 - ▶ p_θ is described in terms of a specific functional form which has a number of adjustable parameters

Learning in PGMs

- ▶ Density estimation techniques:
 - ▶ MLE: maximum likelihood estimation ←
 - ▶ Bayesian estimators: needs a prior distribution on parameters
 - ▶ Maximum a posteriori (MAP)
 - ▶ Full Bayesian estimator

Learning with MLE: maximum likelihood estimation

- ▶ The goal of learning is to return a model p_θ that precisely captures the distribution p_{data} from which our data was sampled .
- ▶ This is in general not achievable because of limited data only provides a rough approximation of the true underlying distribution.
- ▶ We want to select p_θ to construct the **best** approximation to the underlying distribution p_{data} .
- ▶ What is **best**?

Learning with MLE: maximum likelihood estimation

- ▶ Kullback-Leibler (KL) divergence to measure the distance between two distributions:

$$\begin{aligned} KL(p_{data} \parallel p_{\theta}) &= \int p_{data} \log \frac{p_{data}}{p_{\theta}} dx \\ &= \mathbb{E}_{p_{data}} [\log p_{data}] - \mathbb{E}_{p_{data}} [\log p_{\theta}] \end{aligned}$$

- ▶ As the first term does not depend on p_{θ} , we have,

$$\operatorname{argmin}_{p_{\theta}} KL(p_{data} \parallel p_{\theta}) = \operatorname{argmin}_{p_{\theta}} -\mathbb{E}_{p_{data}} [\log p_{\theta}] = \operatorname{argmax}_{p_{\theta}} \mathbb{E}_{p_{data}} [\log p_{\theta}]$$

- ▶ p_{θ} should assign high probability to instances sampled from p_{data} to decrease the loss function.

Learning with MLE: maximum likelihood estimation

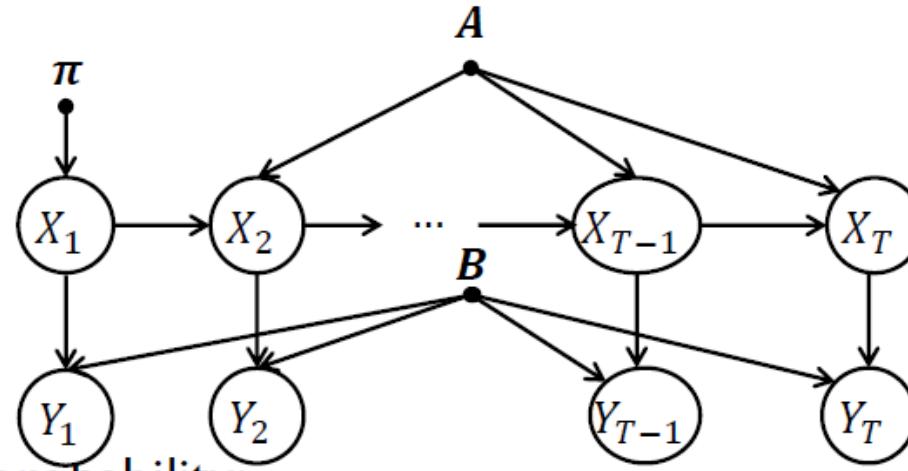
- ▶ Monte Carlo Estimation
 - ▶ Approximate the expected log-likelihood

$$\mathbb{E}_{p_{data}}[\log p_{\theta}] = \int p_{data}(x) \log p_{\theta}(x) \, dx = \frac{1}{N} \sum_{i=1}^N \log p_{\theta}(x^i)$$

$$\operatorname{argmax}_{p_{\theta}} \mathbb{E}_{p_{data}}[\log p_{\theta}] = \operatorname{argmax}_{p_{\theta}} \frac{1}{N} \sum_{i=1}^N \log p_{\theta}(x^i)$$

Example

MLE for HMM – completely observed data



Initial state probability:

$$\pi_i = P(X_1 = i), \quad 1 \leq i \leq K$$

State transition probability:

$$A_{ji} = P(X_{t+1} = i | X_t = j), \quad 1 \leq i, j \leq K$$

State transition probability:

$$B_{ik} = P(Y_t = k | X_t = i), \quad 1 \leq k \leq M$$

Example

MLE for HMM – completely observed data

$$P(\mathcal{D}|\boldsymbol{\theta}) = \prod_{n=1}^N \left[P\left(X_1^{(n)} \middle| \boldsymbol{\pi}\right) \prod_{t=2}^T P(X_t^{(n)} | X_{t-1}^{(n)}, \boldsymbol{A}) \prod_{t=1}^T P(Y_t^{(n)} | X_t^{(n)}, \boldsymbol{B}) \right]$$

$$\hat{A}_{ji} = \frac{\sum_{n=1}^N \sum_{t=2}^T I\left(X_{t-1}^{(n)} = j, X_t^{(n)} = i\right)}{\sum_{n=1}^N \sum_{t=2}^T I\left(X_{t-1}^{(n)} = j\right)}$$

$$\hat{\pi}_i = \frac{\sum_{n=1}^N I\left(X_1^{(n)} = i\right)}{N}$$
$$\hat{B}_{ik} = \frac{\sum_{n=1}^N \sum_{t=1}^T I\left(X_t^{(n)} = i, Y_t^{(n)} = k\right)}{\sum_{n=1}^N \sum_{t=1}^T I\left(X_t^{(n)} = i\right)}$$

Discrete
observations

Example from Soleymani pgm-sharif

Learning from Incomplete data

- ▶ Now, we assume **data is not completely observed**
- ▶ Given a set of i.i.d. training samples $\mathcal{D} = \{x^1, x^2, \dots, x^n\}$, the goal is learning parameters of factors (CPDs and potentials).
 - ▶ We assume that the structure of the graphical model is known.
 - ▶ Each sample $x^i = [x_O^i, x_H^i]$ is a vector that **some of its elements are latent/hidden/unknown**.
 - ▶ We assume a specific set of random variables are latent in all samples

Learning from Incomplete data

- ▶ Complete likelihood
 - ▶ Maximizing likelihood $p_{\theta}(\mathcal{D}; \boldsymbol{\theta})$ for labeled data is straightforward
- ▶ Incomplete likelihood
 - ▶ Our objective becomes
$$p_{\theta}(\mathcal{D}; \boldsymbol{\theta}) = p_{\theta}(x_O; \boldsymbol{\theta}) = \sum_{\mathcal{H}} p(x_O, x_{\mathcal{H}}; \boldsymbol{\theta})$$
- ▶ Incomplete likelihood is the sum of likelihood functions, one for each possible joint assignment of the missing values.
- ▶ The number of possible assignments is exponential in the total number of latent variables.

EM algorithm

- ▶ General algorithm for finding MLE when data is incomplete (missing or unobserved data).
- ▶ An iterative algorithm in which each iteration is guaranteed to improve the log-likelihood function
- ▶ When hidden data, \mathcal{H} is relevant to observed data \mathcal{D} (in any way), we can hope to extract information about it from \mathcal{D} assuming a specific parametric model on the data.

Expectation-maximization (EM) method

X : observed variables

Z : unobserved variables

θ : parameters

Expectation step (E-step): Given the current parameters, find soft completion of data using probabilistic inference

Maximization step (M-step): Treat the soft completed data as if it were observed and learn a new set of parameters

Choose an initial setting $\theta^0, t = 0$

Iterate until convergence:

E Step: Use X and current θ^t to calculate $P(Z|X, \theta^t)$

M Step: $\theta^{t+1} = \operatorname{argmax}_{\theta} E_{Z \sim P(Z|X, \theta^t)} [\log p(X, Z|\theta)]$

$t \leftarrow t + 1$

$$E_{Z \sim P(Z|X, \theta^{\text{old}})} [\log p(X, Z|\theta)]$$

expectation of the log-likelihood evaluated using the current estimate for the parameters θ^t

15 $= \sum_Z P(Z|X, \theta^{\text{old}}) \times \log p(X, Z|\theta)$

EM theoretical foundation

- ▶ Remember this equation from the last lecture

$$KL(q(Z) \parallel p(Z|X)) = KL(q(Z) \parallel p(Z, X)) + \log p(X)$$

- ▶ We have:

$$\begin{aligned} KL(q(Z) \parallel p(Z|X)) &\geq 0 \rightarrow \log p(X) \geq -KL(q(Z) \parallel p(Z, X)) \\ \rightarrow \mathbf{q(Z)} &= \mathbf{p(Z|X)} \rightarrow \mathbf{\log p(x)} = -\mathbf{KL(q(Z) \parallel p(Z, X))} \end{aligned}$$

- ▶ In **E-step** we set $q(Z)$ equal to $p(Z|X)$, therefore in the M-step we can maximize $-KL(q(Z) \parallel p(Z, X))$ instead of $\log p(X)$:

$$\operatorname{argmax}_{\theta} \log p(x; \theta) = \operatorname{argmax}_{\theta} E_{p(Z|X)}[p(Z|X)] - E_{p(Z|X)}[p(Z, X; \theta)]$$

- ▶ The first term is fixed in the E-step and in the **M-step** is independent of θ , therefore in the maximization step we only maximize the second term:

$$\operatorname{argmax}_{\theta} - E_{p(Z|X)}[p(Z, X; \theta)]$$