Probabilistic graphical models
Learning from data

22-808: Generative models

Sharif University of Technology
Fall 2025

Fatemeh Seyyedsalehi

Recap

[}
]
1
1
1
1

A family of distributions we can

1 : tackle with. Each instance of 8
' R o I8 _r" represent a specific distribution
b e [’

D EEE g s

! mEEa - [

/ K

1

!

A a» EXGa O ,‘r i i
: | & L o B Se_archlr?g .the.model famﬂy
; & . with a similarity metric
A

[}

' PERY T Ry ‘,‘, SIM(P yq¢0(%), Po(x))
' ol YR

e ¥

» We need a framework to interact with distributions for statistical
generative models.
Probabilistic generative models
Representation — Inference and Sampling — Learning (today)
Deep generative models

Learning in PGMs

» Let's assume that the real data is generated from a
distribution pg4¢q

A set of independent, identically distributed (i.i.d.) training
samples, D = {x1,x?, ..., x™} is available.

Each sample is an assignment of values to (a subset of) the
variables, e.g. pixel intensities.

» We are also given a family of models pg, and our task is to
learn some “good” distribution in this set

For example, pg could be all Bayes nets with a given graph
structure, for all possible choices of the CPDs

Learning in PGMs

» We want to learn the full distribution so that later we can
answer any probabilistic inference query

» Learning in PGMs
Parameter learning «——

Learning parameters of potential functions and conditional
probability distributions (CPDs)

Structure learning

For fixed nodes, learning edges!

Learning in PGMs
Parameter learning

» Given a set of i.i.d. training samples D = {x1,x%, ..., x"},
the goal is learning parameters of factors, i.e. CPDs and
potentials.

We assume that the structure of the graphical model is known.

Each sample x'=[xj,x3,..,x,] is a vector of random
variables in the graph.

» A parametric density estimation problem

pg is described in terms of a specific functional form which has
a number of adjustable parameters

Learning in PGMs

» Density estimation techniques:
MLE: maximum likelihood estimation «——
Bayesian estimators: needs a prior distribution on parameters

Maximum a posteriori (MAP)
Full Bayesian estimator

Learning with MILE: maximum likelihood estimation

» The goal of learning is to return a model pg that precisely
captures the distribution p;,¢, from which our data was
sampled .

» This is in general not achievable because of limited data
only provides a rough approximation of the true
underlying distribution.

» We want to select pg to construct the best approximation
to the underlying distribution pg4¢4-

» What is best?

Learning with MILE: maximum likelihood estimation

» Kullback-Leibler (KL) divergence to measure the distance between two
distributions:

Pdata dx
Pe

KL(pdata | Pe) — jpdata log

= Epgaral108 Paatal — Epgqae, 108 Pol

» As the first term does not depend on pg, we have,

argmin KL(pgqtq | Pg) =argmin —E,__[logpg| = argmaxE, . [logpg]
Po Po Po

» pg should assign high probability to instances sampled from pg,¢4 tO
decrease the loss function.

Learning with MILE: maximum likelihood estimation

» Monte Carlo Estimation
Approximate the expected log-likelihood

N

1 |

Ep,...[logpel = j Paata(x)logpg(x) dx = szlogpe(x‘)
=1

1 .
argmax E, [logpg| = argmax ~ >N logpg(x)
P Pe

Example
MLE for HMM — completely observed data

Initial state probability:
m; = P(X; =1), 1<i<K
State transition probability:

AjiZP(XE+1=i|Xf=j)! 1£L,]£K
State transition probability:

By = P(Y; = k|X; = 1), 1<k<M

10 Example from Soleymani pgm-sharif

Example
MLE for HMM — completely observed data

T | | T | |
[T ram] o n.e)

N1 (X =) % =)

N

P(D|6) = n {P (Xi'n.)

n=1

s

ji = () _
n= 123‘" 2 1 (X ; })
Zn 1jr (Xl(n') — i)
T = N
~ Zn 1 11 (X(n) Y(n) = k) Discrete
Bix = observations

n= 12? 1I(X(n} =)

Example from Soleymani pgm-sharif

11

Learning from Incomplete data

» Now, we assume

» Given a set of i.i.d. training samples D = {x1,x%, ..., x"},
the goal is learning parameters of factors (CPDs and
potentials).

12

We assume that the structure of the graphical model is known.
Each sample x! = [x},x}] is a vector that some of its
elements are latent/hidden/unknown.

We assume a specific set of random variables are latent in all
samples

Learning from Incomplete data

» Complete likelihood
Maximizing likelihood pg (D; 0) for labeled data is straightforward

» Incomplete likelihood
Our objective becomes

po(D; 0) = py(x08) =) (X0, 6)
H

» Incomplete likelihood is the sum of likelihood functions, one
for each possible joint assignment of the missing values.

» The number of possible assignments is exponential in the total
number of latent variables.

13

EM algorithm

» General algorithm for finding MLE when data is
incomplete (missing or unobserved data).

» An iterative algorithm in which each iteration is
guaranteed to improve the log-likelihood function

» When hidden data, H is relevant to observed data D (in
any way), we can hope to extract information about it
from D assuming a specific parametric model on the data.

14

Expectation-maximization (EM) method

X: observed variables Expectation step (E-step): Given the current parameters, find

Z: unobserved variables soft completion of data using probabilistic inference

6: parameters Maximization step (M-step): Treat the soft completed data

as if it were observed and learn a new set of parameters

Choose an initial setting 8°,¢t = 0

lterate until convergence:
E Step: Use X and current @' to calculate P(Z|X, 6%)
M Step: 1 = argmax E; pezixetylogp(X,Z|0)]

t—t+1
it expectation of the log-likelihood evaluated using

the current estimate for the parameters 8¢
EZ~P(Z|X,0°1d) [log p(Xr Zle)]

. =2zP(Z|X,6°9) x logp(X,Z|)

EM theoretical foundation

» Remember this equation from the last lecture
KL(q(2) I p(Z|X)) = KL(q(2) I p(Z, X)) + logp(X)
» We have:
KL(q(Z) Il p(Z|X)) 2 0 - logp(X) = —KL(q(Z) I p(Z, X))
- q(Z) = p(ZIX) > logp(x) = —KL(q(2) I p(Z, X))

» In E-step we set q(Z) equal to p(Z|X), therefore in the M-step we can
maximize —KL(q(2) | p(Z, X)) instead of logp(X):

argglaxlogp(x; 0) = Argmax Epz1x) P (Z1X)] = Epz10)[p(Z, X; 6)]

» The first term is fixed in the E-step and int the M-step is independent of 0,
therefore in the maximization step we only maximize the second term:

argmax — Eyzn[p(Z X; 0)]

16

