
Autoregressive models

22-808: Generative models
Sharif University of Technology
Fall 2025

Fatemeh Seyyedsalehi



Recap

 We need a framework to interact with distributions for statistical generative

models.

 Probabilistic generative models

 Representation – Inference – Sampling – Learning

 Intro. to causal modeling

 Deep generative models

 Autoregressive models

 First family of models we talk about

2



PGMs Vs. Deep neural networks

 Chain rule

 PGMS

 Assumes conditional independencies

 Neural networks

 Assumes specific functional form for the conditionals. A 
sufficiently deep neural net can approximate any function.

3



Deep neural networks for classification

 Binary classification
 We want to find

 Logistic regression

 Neural networks

 More flexible

 More parameters: A, b,α

 Repeat multiple times to get a multilayer 

perceptron (neural network)

4



Autoregressive models

 We can pick an ordering of all the random variables

 Ordering of pixels in an image

 Without loss of generality, we can use chain rule for
factorization

\

 We assume some parametric functions for CPDs

5



Fully Visible Sigmoid Belief Network (FVSBN)

 Each variable is a binary random variable given others

 How to evaluate a joint probability

 How to sample

6



Fully Visible Sigmoid Belief Network (FVSBN)

7



NADE: Neural Autoregressive Density Estimation

 To increase the power of the model we use neural
networks instead of logistic regression

 O(n) parameters with parameter sharing

8



NADE results

9



General discrete distributions

 Model non-binary discrete random variables

 Pixels from 0 – 255

 Imagine a categorical distribution

 Softmax operator

10



RNADE

 Modeling continues random variables, e.g. speech signals
by estimating the parameters of their distributions

 For example, a mixture of k gaussians

11



Autoregressive models vs. autoencoders

 It seems they are like to each other.

 However, a vanilla autoencoder is not a generative model: 
it does not define a distribution over x we can sample 
from to generate new data points.

12



MADE: Masked Autoencoder for Distribution 
Estimation

 Challenge: An autoencoder that is autoregressive

13



RNN: Recurrent neural nets

 Main challenge of autoregressive models up to now:

 History gets longer !!!

 RNN propose to keep a summary and recursively update
it

14



RNN: Recurrent neural nets

 Example: imagine an alphabets with 4 letter

 one-hot encoding

15



RNN: Recurrent neural nets

 Can be applied to sequences of arbitrary length, and are very 
general: For every computable function, there exists a finite RNN 
that can compute it.

 Issues:

 Requires an ordering.

 A single hidden vector needs to summarize all the (growing) history.

 They have sequential likelihood evaluation (very slow for training) 
and sequential generation (unavoidable in an autoregressive model) 
that can not be parallelized

 Exploding/vanishing gradients when accessing information from 
many steps back

16



PixelRNN

 Using RNN variants for generating images.

 We need an ordering assumption on pixels

 An issue

 We also should consider an ordering for 3 channels: red,
green and blue.

17



PixelRNN

 Results on down sampled ImageNet. 

 Very slow: sequential likelihood valuation.

18



PixelCNN

 Use convolutional architecture to predict next pixel given 
context (a neighborhood of pixels).

 Has to be autoregressive. 

 Causal CNN

 Masked convolutions preserve raster scan order.

 Additional masking for colors order.

19



PixelCNN

 Samples from the model trained on Imagenet (32 × 32 
pixels).

 Similar performance to PixelRNN, but much faster.

20



Adversarial attack and anomaly detection

 Machine learning methods are vulnerable to adversarial
examples.

 When a model can compute the likelihood function, we
can use it for anomaly detection.

 Corrupted images may have less likelihood

21



PixelDefend

 Train a generative model 𝑝(𝑥) on clean inputs (PixelCNN)

 Given a new input 𝑥, evaluate 𝑝(𝑥)

 Adversarial examples are significantly less likely under 
𝑝(𝑥)

22



Attention mechanism

 Compare current hidden state (query) to all past hidden states 
(keys), e.g., by taking a dot product.

 Construct attention distribution 

to figure out what parts of the history 

are relevant, e.g., via a Softmax.

 Construct a summary of the 

history, e.g., by weighted sum.

 Use summary and current hidden 

state to predict next token/word.

23



Transformer

24



Transformer

 Current state of the art (GPTs): replace RNN with 
Transformer.

 Avoid recursive computation. Use only self-attention to 
enable parallelization.

 Needs masked self-attention to preserve autoregressive 
structure.

 Demo: 

 https://transformer.huggingface.co/doc/gpt2-large

 https://huggingface.co/spaces/huggingface-projects/llama-2-
13b-chat

25



Transformer

 Attention mechanisms were introduced to give access to 
all sequence elements at each time step and adaptively 
focus only on relevant context

 Can handle longer sequences compared to RNNs. 

26



Transformer

27



Self-attention in transformers

 In each timestep, we compose 3 vectors from the input

 Query

 Key

 Value

 These vectors are obtained with

shared parameters 𝑊𝑞 ,𝑊𝑘 ,𝑊𝑣

28

https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html



Self-attention in transformers

 Now, we compute

unnormalized attention

weights for each time step.

29

https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html



Self-attention in transformers

 The subsequent step is to normalize the unnormalized attention
weights ω, to obtain the normalized attention weights 𝛼

 Scaling by 𝑑𝑘 , dimension of key vectors, avoids the attention weighs to
become to large or too small

30

https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html



Self-attention in transformers

 In the last step, the context vector 𝑧𝑖 is obtained as an
attention-weighted version of the input 𝑥𝑖

31



Multi-head attention

32

 A set of three matrices query, key, and value are
considered as a single attention head in the context of
multi-head attention.

https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html



Multi-head attention

 The concept of multi-head attention is similar to using
multiple kernels in CNNs.

33

https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html



Cross attention vs. self attention

 Mixing two input sequences

 Can have different lengths

 In encoder-decoder transformer, cross attention

is used to relate the encoder output to decoder.

34
Cross attention Self attention



Masked attention

 In the decoder block, the self-attention mechanism is
masked.

 The causal self-attention

 To impose a causal structure to the model, the attention
mechanism can only consider previous elements of the
sequence.

 Blocking paths to the future!

35



Transformer

 Residual connection

 Layer normalization

36



Positional encoding in transformers

 Up to now, we have considered the input as a bag of
words.

 The transformer model does not have an inbuilt recurrent
architecture like RNNs.

 Therefore, the positional information is directly

added to the input to impose the knowledge

of the order of objects in a sequence.

 Learning an embedding

 Using an embedding function

37



Positional encoding in transformers

 Different ways:
 One-hot encoding of the position in vector 𝑒
𝑥 ∈ 𝑅𝑇×𝑑 , 𝑒 ∈ 𝑅𝑇 → 𝑥′ = 𝑥, 𝑒 , 𝑥′ ∈ 𝑅𝑇×(𝑇+𝑑)

 Learning a combined representation
𝑥 ∈ 𝑅𝑇×𝑑 , 𝑒 ∈ 𝑅𝑇 → 𝑥′ = 𝑊𝑇𝑅𝑒𝐿𝑈(𝑊𝑥

𝑇𝑥 +𝑊𝑒
𝑇𝑒)

 Building distinct representations of inputs and positions
𝑥 ∈ 𝑅𝑇×𝑑 , 𝑒 ∈ 𝑅𝑇 → 𝑥′ = 𝑊1

𝑇𝑅𝑒𝐿𝑈(𝑊𝑥
𝑇𝑥) +𝑊2

𝑇𝑅𝑒𝐿𝑈(𝑊𝑒
𝑇𝑒)

 The original transformer paper proposes a fixed representation
of positions 𝑝; using sin and cos functions

𝑥 ∈ 𝑅𝑇×𝑑 → 𝑥′ = 𝑊1
𝑇𝑅𝑒𝐿𝑈(𝑊𝑥

𝑇𝑥) + 𝑝

38



Positional encoding in transformers

 Sin and cos functions for fixed positional embedding:

 𝑝 𝑘, 2𝑖 = sin
𝑘

𝑛
2𝑖
𝑑

 𝑝 𝑘, 2𝑖 + 1 = cos
𝑘

𝑛
2𝑖
𝑑

 𝑘: position an element

 𝑑: dimension of the embedding space

 𝑛: user defined scalar (10000 in the main paper)

 𝑖: used for mapping to column indices; 0 ≤ 𝑖 ≤
𝑑

2

39 https://machinelearningmastery.com/a-gentle-introduction-to-positional-

encoding-in-transformer-models-part-1/



Positional encoding in transformers

 Sin and cos functions for fixed positional embedding:

 Different frequencies in this embedding helps the model to
consider long and short term dependencies in the sequence.

40



The transformer function 

41



Transformer based LLMs

 Both encoder and decoder style transformer use the
same self-attention layers to encode tokens.

 Encoder is designed to learn embedding for

predictive modeling tasks like classification.

 In contrast, decoders are designed to

generate new texts, ex.

answering user queries.

42

encoder

decoder



Transformer based LLMs

Different developed LLMs:

43



Encoder-decoder transformer 
example

 Main transformer paper

 Developed for the translation task

44



Encoder-decoder transformer 
example

 Encoder-decoder models are typically used for natural
language processing tasks that involve understanding
input sequences and generating output sequences, often
with different lengths and structures.

 They are particularly good at tasks where there is a
complex mapping between the input and output
sequences and where it is crucial to capture the
relationships between the elements in both sequences.

 Some common use cases for encoder-decoder models
include text translation and summarization.

45



Encoder-decoder transformer 
example

 Main transformer paper

46



Decoder only transformer 
example

 GPT: Generative Pretrained Transformer

47



Decoder only transformer 
example

 GPT: Generative Pretrained Transformer

 One of the most notable aspects of GPT models is their
emergent properties. Even though these models were
only taught to predict the next word, the pretrained
models are capable of text summarization, translation,
question answering, classification, and more.

48



Encoder only transformer 
example

 BERT: Bidirectional Encoder Representations 
from Transformers

 Pretrained on a large text corpus using 

 Masked language modeling 

 Next-sentence prediction

49

Masked language modeling 



Encoder only transformer 
example

 Next-sentence prediction
 Asks the model to predict whether the original document's sentence order 

of two randomly shuffled sentences is correct. 

[CLS] Toast is a simple yet delicious food [SEP] It’s often served with butter, jam, or honey.

[CLS] It’s often served with butter, jam, or honey. [SEP] Toast is a simple yet delicious food.

 The [CLS] token is a placeholder token for the model, prompting the model
to return a True or False label indicating whether the sentences are in the
correct order or not.

 These two loss functions allow BERT to learn rich contextual
representations of the input texts, which can then be finetuned for various
downstream tasks like sentiment analysis, question-answering, and named
entity recognition.

50


