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» We need a framework to interact with distributions for

models.
Probabilistic generative models
Deep generative models

Autoregressive models

Variational autoencoder

statistical generative



Latent variable models

Given finite samples x4, ..., z, ~ p, and unlimited samples z ~ r

Generative latent variable model:

1. z~r1,
2. @~ pyl]2)

Want to learn the marginal pg(z) ~ p(z) defined by

pe(x) =/pg(:r;|z)?‘(z) dz.
z



Latent variable models

» Latent variables helps to discover structures behind the
data.

Useful for downstream tasks or interpretability.
Latent variables can capture the variability in the data

Ethnicity




Latent variable models

Want to learn the marginal pg(x) =~ p(z) defined by
po(x) = / po(x|z)r(z)dz.
Z
Fit the maximum likelihood estimator?

Ormie = argmax | logpg(z) = argmax [ lc:rgf po(x|z)r(z)dz
6  T~p 6  T~p Z

This doesn’t look promising...



Example of shallow latent variable model: GMM

Generative model:
1. z ~ Categorical _(K),
2. x~N(us, %),

Likelihood:

pg(:r:)=/ng(:r|z)r(z)dz
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But what if (z) is a continuous distribution over, e.g. z € R*?2
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—— Gaussian Mixture Model

== Actual Data

p=10.58, 0=0.35, w=0.53
u=9.65, 0=0.36, w=0.27
p=11.82, 0=0.31, w=0.08
u=8.61, 0=0.52, w=0.11




The ELBO lower bound

Fit the maximum likelihood estimator?

Omie = argmax E logpe(z) = argmax E lﬂg/ po(z|z)r(z)dz.
6 TP g  T~p z

Use importance sampling to estimate the integral.

Construct a lower-bound on the marginal log-likelihood (the ELBO):

po(Z; E)}

q(z|x)

f T
> E [logyﬂ( ’z)}.
2rq(-|z) q(z|z)

logpg(z) =log E [
2rg(-|z)



ELBO estimation with Monte Carlo

I,z
Importance-sampling estimator: logpg(z) =log E lp Q( : )] :
=~g(le) | 4(2]2)

Cannot directly estimate the log-likelihood with samples.

Let z; ~ q(-|z). Evidence lower-bound (often use m = 1; like “hard” EM):

m

Do (x, 1 s A
logpe(z) > E [log Po(a z)} N — Z [Iog Po 2, 2i) )] .

z~q(-|T) q(z|z) q(zi|x)

1=1



Optimizing ELBO

po(x, z)

Define the ELBO to be L(z, z; 0, q) = log :
q(z|z)

Estimate the marginal log-likelihood with by logpg(z) > E L(x,z:;0,q).

po(x|z)r(z)
pe(z)

Equality holds when ¢(z|z) = pe(z|z) =

Jointly optimize over 0, q:

e = argmax E logpg(x) =argmaxsup E L(z,z2;60,q).
5, I~p 7] q L~p
z~q(+|z)



Optimizing ELBO

How to estimate the posterior q¢(z|x) =~ pg(z|x)?

For GMM'’s this was easy. We can compute the posterior exactly:

e (z|2)pe(2 T N(x; ., 2.
a(zlx) = po(cfe) = PADEIPE) e NAEiles 2e)
po(x) Dy TN (2 pg, Xi)

What if the model isn’t so simple?

» What if the likelihood ps(|2) isn’t just a Gaussian?

» What if the prior (=) is a continuous distribution on z € R*?
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Optimizing ELBO
How to estimate the posterior ¢(z|x) ~ pg(z|x)?
Learn a model that approximates the posterior!

Let g4 (2|z) be a family of density estimators with parameters ¢.

People sometimes call this amortized inference.
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Stochastic Backpropagation

Jointly optimize over @, ¢:

Ol = argmax E logpg(x) =argmaxsup E L(x,z;0,0).
oo © P ol

Let’s use SGD, given a sample z; ~ p, z; ~ qu(-|z;) .

. Poli, Z
Estimate the gradientw.rt 0: Vo E  L(x,z:;60,¢) = Vglog Po( )

T~p qo(zilzi)
z2~~qg(|T)

But we're in trouble computingV, E  L(z,z;0, ).
Tr~p
zqgy (-] )
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The Reparameterization Trick

Need to construct a Monte Carlo estimateof V, E  L(x,z;0,0).
Tr~p
z~qy(-|T)

Suppose ¢, (2|7) is defined by a pushforward distribution, e.g.
z = fo(x,€), where e ~ N(0,1).

Then V IEP L(x,z:0,¢) = mIEp Vol(x, fo(x,€);0,0).
z2vqg(|2) e~N(0,1)

This is an example of Monte Carlo gradient estimation.
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The Gaussian VAE

Use a prior r(2) = N(0,I) where z € R” (kis a hyper-parameter).

With a Gaussian likelihood ps(|z) = N (2;g6(2),05(2)1).

Where ¢y : Z2 — X (the “decoder”) and gg : Z — R are neural nets.

Use a posterior approximation ¢ (z|x) = N (z; fs(x), Xy (x))

Where f, : X — Z (the “encoder") and X, : X — Z ® Z are neural nets.

Think of it like a Gaussian mixture model with infinitely many components!
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The Gaussian VAE

encode

dacode

Infarance Generative
s )i b s —
0 - - " ' Raconsin
Inguit Image f'-_'\. l:\-'\. '.'{._ t:l. A -II:: } £ Al Image
. {T'H, = _-'r::) R
—= __<,_-_; s f_'}.'~ W, e, —e
W ~® Ay Y "-__: \(.___J
il <J 1&} ¥ Y
__ | o
nput Fikgd e autpu

, D) 9 (/%)

M

qq (Z]x)

M

g4 (z]x)

15

Latent distribution

log p(z, x; 0) — log q4(z|x))]
log p(z, x; 0) — log p(z) + log p(z) — log q4(z|x))]
log p(x|z; 0)] — Dki(qs(z|x)|lp(2))




Reconstruction and Divergence

The ELBO of the Gaussian VAE is:

dim(AX’)

E |lz—ge(2)II* — D(gg(2]2) || 7(2)).

202 2rgy(-|2)

log(2mo?) —

If o is held constant, then
- 1
Omle = argmininf E — |z — 96(2)|1> + D(qy(2|z) || 7(2))]-
0 © I"-‘{P| | 20
ZNQHG Bl M

People refer to these to terms as “reconstruction” and “divergence.”
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The Gaussian VAE
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Reparameterization in VAE

» We can easily backpropagate the loss to the Encoder.

Decoder
Pe(x|z)

A
Encoder I Sample I

po(2)

K (X)

= He(x) +04(x) - €=z I

Z

Encoder
qe(z|x)

Sample
e~N(0,1) o (2)
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Sampling from a Variational Autoencoder

Decoder
pe(x|2)

/Z
Sample

Q z~p(z) = N(0,1)
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Sampling from a Variational Autoencoder

Theoretically we should then add Gaussian noise to
the predicted mean, but it doesn’t look good...

Decoder
pe(x|2)

Sample
z~p(z) = N(0,I)
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VAE vs. AE (autoencoder)

» The main advantage of a VAE over a deterministic
autoencoder is that it defines a proper generative model,

that can create sensible-looking novel images by decoding
prior samples.

» An autoencoder only knows how to decode latent variables

derived from the training set and performs poorly when
fed random inputs.
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VAE vs. AE (autoencoder)

I E
Z

L=l2-xI?

Encoder
q¢(z|x)

N(O,1)
-
A
0 Decoder

Encoder
q¢(z|x)

22 L=Il2—xI?+KL(qy(zlx) Il p(2))



VAE vs. AE (autoencoder)

» In the case of reconstruction task, both models can
reconstruct a given input image reasonably well, although
the VAE reconstructions are somewhat blurry.

» Row 2: reconstructed ) | -' R .a.a
Qlﬂlﬂ
» Row 3,4: reconstructed

» Row 1: main image
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B-VAE

» VAEs often generate somewhat blurry images

» This is not the case for models that optimize the exact likelihood,
such as pixelCNNs

» Considering the reconstruction term of the VAE loss function:
1
202
» The VAE encoder maps a set of different inputs to a same
latent variable.

|2 — dg(2)||3 + const

log pg(x|z) =

» By the above reconstructing penalty, decoder should
predict the average of all possible inputs mapped to this
latent code.
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B-VAE

» We can solve this problem by increasing the expressive power of
the posterior approximation (avoiding the merging of distinct
inputs into the same latent code), or of the generator (by adding
back information that is missing from the latent code), or both.

» However, an even simpler solution is to reduce the penalty on
the KL term, making the model closer to a deterministic
autoencoder:

Ls(0,0|x) = —E,, (22) logpe(x|z)] +5 DrL (94 (2|2) || pe(z))
\ iy / N r—
Lr Cr
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