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Recap

 We need a framework to interact with distributions for statistical generative models.

 Probabilistic generative models

 Deep generative models

 Autoregressive models

 Variational Autoencoders

 Generative adversarial networks

 Both AR and VAE model families attempted to minimize the KL divergence between model family
and data distribution, or equivalently attempt to maximize the likelihood.

 In GAN we are going to use an alternative choice for the similarity measure between model
distribution and data distribution.
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Maximizing the likelihood

 Optimal statistical efficiency

 Assume sufficient model capacity, such that there exists a
unique 𝜃∗ that satisfy 𝑝𝜃∗ = 𝑝𝑑𝑎𝑡𝑎.

 The convergence of ෠𝜃 to 𝜃∗ when 𝑀 → ∞, is the fastest
among all statistical methods when using maximum likelihood
training.
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Maximizing the likelihood

 For imperfect models, achieving high log-likelihoods might not 
always imply good sample quality.

An isotropic Gaussian distribution was fit to data drawn from a mixture of 
Gaussians by either minimizing KL divergence (KLD), maximum mean discrepancy 
(MMD), or Jensen-Shannon divergence (JSD). The different fits demonstrate 
different tradeoffs made by the three measures of distance between distributions.
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Implicit generative models 

 Kind of probabilistic generative models without an explicit 
likelihood function

 We use a likelihood-free approach to train these models
 Training by comparing samples

Explicit models vs. implicit models 
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Learning by comparing samples

 We should define a distance(similarity) measure between
two distributions that:

 Provides guarantees about learning the data distribution.

argmin
𝑝𝜃

𝐷 𝑝𝑑𝑎𝑡𝑎 , 𝑝𝜃 = 𝑝𝑑𝑎𝑡𝑎

 Can be evaluated only using samples from the data and model 
distribution.

 Are computationally cheap to evaluate.

 Many distributional distances and divergences fail to 
satisfy the later two requirements
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Learning by comparing samples

 The main approach to overcome these challenges is to 
approximate the desired quantity through optimization 
by introducing a comparison model, often called a 
discriminator or a critic 𝐷, such that:

 where ℱ is a functional that can be estimated using only 
samples from 𝑝∗(𝑝𝑑𝑎𝑡𝑎) and 𝑞. One way is that it 
depends on distributions only in expectations. 

 Therefore, it can be estimated using Monte Carlo estimation. 
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Learning by comparing samples

 As we usually use parametric functions (ex. Neural
networks) for both the model and discriminator.

 Therefore, by the following optimization we estimate the
distance measure

 Then, instead of optimizing the exact objective

we use the tractable approximation provided through the
optimal 𝐷𝜙.
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Generative adversarial networks
(Goodfellow GAN)

 A finite number of samples from the desired real
distribution is available: 𝑥1, 𝑥2, … , 𝑥𝑛

 Like VAEs, we consider a latent variable model

for the model generation process and attempt to

learn 𝐺𝜃. However, here we learn this function by

Comparing samples.
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The Goodfellow GAN
The probabilistic classification view

 Assuming 𝐷(𝑥) as a binary classifier which predicts
whether a given point 𝑥 was sampled from the real
distribution or it is a fake sample from the generator 𝐺𝜃.

 A cross entropy loss to train this classifier:

 We can see that the optimal discriminator for a fixed
generator 𝐺𝜃 is:
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The Goodfellow GAN
The objective function

 By substitution the optimal discriminator into the cross-
entropy loss, we have:

where JSD is the Jensen-Shannon divergence.

11



The Goodfellow GAN

 This establishes a connection between optimal binary 
classification and distributional divergences.

 By using binary classification, we were able to compute 
the distributional divergence using only samples, which is 
the important property needed for learning implicit 
generative models

 We have turned an intractable estimation problem (how 
to estimate the JSD divergence) into an optimization 
problem (how to learn a classifier) which can be used to 
approximate that divergence.
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The Goodfellow GAN

 With optimal discriminator, we attempt to find the
generative model 𝐺𝜃 that minimizes the JSD divergence.
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Training procedure of GAN 
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Training convergence

 If G and D have enough capacity, and at each step of
training procedure, the discriminator is allowed to reach
its optimum for a specific 𝐺𝜃 , and then 𝑝𝜃 is updated so
as to improve

then 𝑝𝜃 converges to 𝑝𝑑𝑎𝑡𝑎.

 Unrealistic assumptions
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Training convergence

 However, we do not have access to the optimal
discriminator and only we can approximate it with a
parametrized function: neural network 𝐷𝜙
 No guarantee for convergence

 In practice, the generator and discriminator loss keeps
oscillating during GAN training
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The min-max game

 The minmax game

 It is a game not an optimization problem

 It should reach to a Nash equilibria
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Example

 Which one is real?
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F-divergence

 Let 𝑓: 𝑅 → 𝑅 be a convex lower-semicontinuous function,
such that 𝑓 1 = 0. We define the f-divergence between
two distributions with densities 𝑝 and 𝑞 by:

 What’s interesting about f-divergence is that we can
construct a variational representation for it.

 Alternating the integral to an optimization
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Convex lower-semicontinuous function
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Fenchel duality

 The idea is to use the convex conjugate of the function f,
which is defined as follows:

 Fenchel duality: repeat application of the conjugate
operation to convex lower-semicontinuous function f
yields 𝑓∗∗ = 𝑓. Therefore, we have:
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Variational representation of F-divergence

 Using Fenchel duality, we obtain the variational
representation of the f-divergence.
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F-GAN

 The dual form can be approximated using Monte Carlo
estimation.

 Assuming a parametric family of functions 𝑇𝜑 (ex. a
neural network) and the generator function 𝑔𝜃, and a
valid f-divergence, the F-GAN objective is,

 Generator 𝑔𝜃 tries to minimize the divergence estimate 
and discriminator 𝑇𝜑 tries to tighten the lower bound
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F-divergence
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The Goodfellow GAN as F-GAN

 The Goodfellow GAN is an instances of the f-GAN.

 Modified version of the Jensen-Shannon

 The f-divergence:

 We can obtain the Goodfellow GAN :
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Mode collapse and catastrophic forgetting

 In the case of mode collapse, the generator might focus
on producing only a limited set of outputs that it knows
will deceive the discriminator, completely ignoring other
parts of the data distribution.

 As the generator iterates over epochs, it starts to forget
the diversity it initially captured.

 This happens because it gets reinforced to produce only
certain types of outputs that are effective in fooling the
discriminator.

26 The generator distribution keeps oscillating between different modes
Stefano Ermon



The problem with KL divergence

 KL divergence problem:

 When distributions' supports are different, the KL does not
defined.

 As it consider the ratio of probability values, it shows a big
difference between wo distributions when one has a very
small value in even in a small region.
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Wasserstein GAN

 Earth-Mover (EM) distance (Wasserstein-1)

 Π(𝑃𝑟 , 𝑃𝑔) shows the set of all joint distributions whose

marginals are 𝑃𝑟 and 𝑃𝑔, respectively.

 It is the cost of optimal transport between two distributions 𝑃𝑟
and 𝑃𝑔.
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Example

 Consider 𝑧~𝑈[0,1]

 𝑃𝑂 a distribution over (0, 𝑧)

 𝑃𝜃 a distribution over (𝜃, 𝑧)

 Different distance measure for these two distributions:
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Example

 Learning can not be done with the other distances and
divergences because the resulting loss function is not
even continuous.

 Comparing EM and JSD for different 𝜃
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Kantorovich-Rubinstein Duality

 We can approximate the Wasserstein distance with its
dual form:

where the sup is over all 1-Lipschitz functions f : X → R.

 Considering a parameterized family of functions for f:
 However, we need to be sure that this family satisfy the 1-

Lipschitz constraint.

 The Lipschitz constraint is essentially that a function must have
a maximum gradient. The specific maximum gradient is a
hyperparameter.
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Constraint on the discriminator function

 The red line is a good discriminator but its gradient is 
nearly 0 at most points. The cyan line is clearly much 
worse as a discriminator, but is much better for training 
the generator because its gradient is not zero.

 The Lipschitz constraint  limits the discriminator function
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Lipschitz constraint

 Quick and dirty solution: clamp the size of the weights

−𝑐 < 𝑊 < 𝑐

 Or clipping the gradient.

 However, a better solution is to add a soft penalty to the loss
function as follows: (WGAN-GP)

Where ො𝑥 is uniformly sampled from the line between samples of
two distributions
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