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Recap

 We need a framework to interact with distributions for statistical

generative models.

 Probabilistic generative models

 Deep generative models

 Autoregressive models

 Variational Autoencoders

 Generative adversarial networks

 Normalizing Flow -> a latent variable model with tractable likelihood
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Motivation

 Any two distributions can be converted to each other ☺

 Start from a simple distribution and convert it to reach a
sufficiently complex one to describe the data distribution

 Find conversions with neural networks
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Change of variable formula

 Imagine uniform random variable 𝑧 on the green area

 We obtain another random variable 𝑥 = 𝐴𝑧
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Change of variable formula

 Imagine uniform random variable 𝑧 on the green area

 We obtain another random variable 𝑥 = 𝐴𝑧

 The volume of the parallelotope is:

 As 𝑧 uniformly distributed over the square, 𝑥 is also
uniformly distributed in this volume, therefore:
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Generalized change of variable

 For an arbitrarily non-linear transformation 𝑓:

𝑃𝑋 𝑥 = 𝑃𝑍 𝑓𝜃
−1 𝑥 det

𝜕𝑓𝜃
−1 𝑥

𝜕𝑥
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Jacobian matrix
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=

𝒙 =

𝑥1
⋮
𝑥𝑛

՜
𝑓

𝒚 =

𝑦1
⋮
𝑦𝑛



Normalizing flow

 In contrast to VAEs the variable the variable 𝑧 has the
same dimension of 𝑥.

 The function 𝑓 should be deterministic and invertible

𝑃𝑋 𝑥 = 𝑃𝑍 𝑓𝜃
−1 𝑥 det

𝜕𝑓𝜃
−1 𝑥

𝜕𝑥
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Learning and inference 

 Learning with maximum likelihood

 Sampling

 Latent representation
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Learning and inference 

 Computing the determinant for an 𝑛 × 𝑛 matrix is
𝑶(𝒏𝟑): prohibitively expensive within a learning loop!

 Key idea: Choose transformations so that the resulting
Jacobian matrix has special structure. For example, the
determinant of a triangular matrix is the product of the
diagonal entries, i.e., an 𝑶(𝒏) operation.

 Therefore, we have to only consider spatial family of
models which limits the ability of this approach.
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NICE - Additive coupling layers
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Real-NVP: Non-volume preserving extension of NICE
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Continuous Autoregressive models as flow models
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Masked Autoregressive Flow (MAF)
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Masked Autoregressive Flow (MAF)
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Inverse Autoregressive Flow (IAF)
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IAF vs. MAF
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IAF vs. MAF
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