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Recap

A family of distributions we can
tackle with. Each instance of 8
represent a specific distribution
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generative models.
Probabilistic generative models

Deep generative models
Autoregressive models
Variational Autoencoders
Generative adversarial networks

Normalizing Flow -> a latent variable model with tractable likelihood



Motivation

» Any two distributions can be converted to each other ©

Start from a simple distribution and convert it to reach a
sufficiently complex one to describe the data distribution

Find conversions with neural networks
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Change of variable formula

» Imagine uniform random variable z on the green area
» We obtain another random variable x = Az
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Figure: The matrix A = ( z ; ) maps a unit square to a parallelogram



Change of variable formula

» Imagine uniform random variable z on the green area
» We obtain another random variable x = Az
» The volume of the parallelotope is:

det(A) = det ( Z ; ) = ad — bc

(a+c)ilb+dl—ab-2be—cd=ad-bhc

» As z uniformly distributed over the square, x is also
uniformly distributed in this volume, therefore:

pX(x) — pZ (WX) / ‘LiOt(A)‘ W = A_l, (1CT-(W) — 1
= pz (Wx) |det(W)]

det(A)



Generalized change of variable

» For an arbitrarily non-linear transformation f:

—-1
Px(x) = Py (fe_l(x)) |det <5f9 (x))|

12| M Arca = 0.04 Jacobian ~ 1.28 B Area ~ 0.08 )
AA=0.0612 =2




Jacobian matrix
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Normalizing flow

» In contrast to VAEs the variable the variable z has the
same dimension of x.

» The function f should be deterministic and invertible

Flow Inverse
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Learning and inference

» Learning with maximum likelihood

max log px (D; 0)) = Y “log pz (f;(x)) + log
xeD

» Sampling

z~ pz(z) x="fy(z)

» Latent representation
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Learning and inference

» Computing the determinant for an n X n matrix is
0 (n3): prohibitively expensive within a learning loop!

» Key idea: Choose transformations so that the resulting
Jacobian matrix has special structure. For example, the
determinant of a triangular matrix is the product of the
diagonal entries, i.e., an O(n) operation.

» Therefore, we have to only consider spatial family of
models which limits the ability of this approach.
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NICE - Additive coupling layers

Partition the variables z into two disjoint subsets, say zy.4 and zg4. 1., for
any 1< d < n
@ Forward mapping z — x:
® X1.4 = Z1.4 (identity transformation)
® Xd+1:n = Zd+1:n + Mo(Z1:4) (Mg(-) is a neural network with parameters
6, d input units, and n — d output units)
@ |nverse mapping x — z:
® 7.4 = X1.4 (identity transformation)
® Zyi+1:n = Xd+1:n — mé’(xl:d)
@ Jacobian of forward mapping:

) l’d 0
J — & — {_r)xd 1
0z —=bn [

azl:d

det(J) =1

@ Volume preserving transformation since determinant is 1.
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NICE - Additive coupling layers

(b) Model trained on TFD

(a) Model trained on MNIST
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NICE - Additive coupling layers
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(¢) Model trained on SVHN (d) Model trained on CIFAR-10
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Real-NVP: Non-volume preserving extension of NICE

@ Forward mapping z — x:
® X1.4 = Z1.4 (identity transformation)
® Xd+1:n = Zd+1:n @ EXP(GQ(Zl:d)) + H-E?(Zl:d)
o 1ip(-) and apg(-) are both neural networks with parameters ¢, d input
units, and n — d output units [© denotes elementwise product]
@ Inverse mapping x — z:
® Z1.4 = X1-4 (identity transformation)
® Zgi1:n — (xd—i—l:n — #-E»'(xl:d)) ® (exp(_aﬂ(xl:d)))
@ Jacobian of forward mapping:

_E)x

J B ( ld 0 )
T oz \ Bee diag(exp(ag(zia)))

det(J) = H exp(ap(z1:4)i) = exp ( Z ag(zl;d);)

i=d+1 i=d+1

@ Non-volume preserving transformation in general since determinant'can

be less than or greater than 1
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Real-NVP: Non-volume preserving extension of NICE

(a) Forward propagation (b) Inverse propagation
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Real-NVP: Non-volume preserving extension of NICE
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Continuous Autoregressive models as flow models

@ Consider a Gaussian autoregressive model:

p(x) = HP(XE\M:')

such that p(x; | x;) = N(pi(x1. -+, xi—1), exp(ai(x1, - -+ . xi—1))?).
Here, 11;(+) and a;(-) are neural networks for i > 1 and constants for
= 1.
@ Sampler for this model:
o Sample zi ~ N(0,1) fori=1,---,n
o Let x; = exp(a1)z1 + 1. Compute pa(x1), aa(x1)
o Let xo = exp(az)zz + 2. Compute p3(x1.Xx2), as(x1, x2)
o Let x3 =exp(az)zz + 3. ...
@ Flow interpretation: transforms samples from the standard Gaussian
(z1. 2. ..., z,) to those generated from the model (xi.x, . ... Xp) Via
invertible transformations (parameterized by 1i;(+). i(-))
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Masked Autoregressive Flow (MAF)

Transformed
distribution

distribution Al &2 |7 & & ‘ n

@ Forward mapping from z — x:

o Let x; =exp(ay)zy + 1. Compute po(xy1), az(x1)
o Let xo = exp(az)zz + 2. Compute p3(x1,x2), az(x1, x2)

e Sampling is sequential and slow (like autoregressive): O(n) time
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Masked Autoregressive Flow (MAF)

Transformed
distribution

Base
distribution L e R

Zn

2 = (2 — ;) -exp(—a;) Yie {l...n}

@ Inverse mapping from x — z:

o Compute all i, vj (can be done in parallel using e.g., MADE)

o Let z; = (x3 — p1)/ exp(aq) (scale and shift)

o Let zo = (X2 — p2)/ exp(az)

o Let z3 = (x3 — p3)/ exp(as) ...
@ Jacobian is lower diagonal, hence efficient determinant computation
o Likelihood evaluation is easy and parallelizable (like MADE)

@ Layers with different variable orderings can be stacked
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Inverse Autoregressive Flow (IAF)
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@ Forward mapping from z +— x (parallel):

o Sample z; ~ N(0,1) fori=1,---.n
o Compute all uj, «vj (can be done in parallel)
o Let x; = exp(a1)z1 + 11
o Let xo = exp(az)za + p2 ..
@ Inverse mapping from x — z (sequential):
o Let z; = (x1 — p1)/ exp(ar). Compute po(z1), az(z1)
o Let z, = (X2 — p2)/ exp(az). Compute p3(z1, 22), as(z1, 22)
@ Fast to sample from, slow to evaluate likelihoods of data points (train)

@ Note: Fast to evaluate likelihoods of a generated point (cache z;, 2. ..\
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|AF vs. MAF
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Figure: Inverse pass of MAF (left) vs. Forward pass of IAF (right)

@ Interchanging z and x in the inverse transformation of MAF gives the
forward transformation of |IAF

@ Similarly, forward transformation of MAF is inverse transformation of

|IAF
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|AF vs. MAF

@ Computational tradeoffs

e MAF: Fast likelihood evaluation, slow sampling
e IAF: Fast sampling, slow likelihood evaluation

@ MAF more suited for training based on MLE, density estimation
@ |AF more suited for real-time generation

@ Can we get the best of both worlds?
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