Normalizing flow

22-808: Generative models
Sharif University of Technology
Fall 2025

Fatemeh Seyyedsalehi

Recap

A family of distributions we can
tackle with. Each instance of 8
represent a specific distribution

B o 55 B0
B [§
Ed=E
SEEHa

i s

| v 4 [

| EEREE P Po®)

: mp;ﬁgw i Searching the model family
; ,nﬁ DEFS | with a similarity metric

L PRGN
X /

generative models.
Probabilistic generative models

Deep generative models
Autoregressive models
Variational Autoencoders
Generative adversarial networks

Normalizing Flow -> a latent variable model with tractable likelihood

Motivation

» Any two distributions can be converted to each other ©

Start from a simple distribution and convert it to reach a
sufficiently complex one to describe the data distribution

Find conversions with neural networks

fl(Zo) fi(zi—l) fi-{—l(zi)
,/ \\ ,/ \\ ,/ \\

/ \ / \ / \
/ \ / \ / \
1 \ 1 \ 1 \
| 1 | | | |
\ 1 \ ! \ !

1 \ 1 \ 1
\ / \ 4
Vs N /7

s ~ L S ~ - i ~ -
Zy ~ pO(ZO) Z; ~ pz(zz) Zg ~ DK (ZK)
h f2 f3 fa Jna fn
fa ' /)\'\.‘ ; 2 ~ \‘.‘
[l" ‘I} I‘ Il. \l"‘ l L | I‘IT /\
% W . Y
) I Q000
B II \! - f - X \i‘ o ! S A
A A R B N(0,1)
Dataset \/ I"‘-._/:‘" \ \ / _/ Gaussian
) e - ~ (Simple Distribution)

(Complex Distribution)

Motivation

» Any two distributions can be converted to each other ©

T
=10

T
-15

20

T
15

T
10

T
05

T
0o

T
0.5

Target distribution

Change of variable formula

» Imagine uniform random variable z on the green area
» We obtain another random variable x = Az

fa+e b+d

(0, 1) (1.1)

" fa,b)

©.0) 1.0 0.0

Figure: The matrix A = (z ;) maps a unit square to a parallelogram

Change of variable formula

» Imagine uniform random variable z on the green area
» We obtain another random variable x = Az
» The volume of the parallelotope is:

det(A) = det (Z ;) = ad — bc

(a+c)ilb+dl—ab-2be—cd=ad-bhc

» As z uniformly distributed over the square, x is also
uniformly distributed in this volume, therefore:

pX(x) — pZ (WX) / ‘LiOt(A)‘ W = A_l, (1CT-(W) — 1
= pz (Wx) |det(W)]

det(A)

Generalized change of variable

» For an arbitrarily non-linear transformation f:

—-1
Px(x) = Py (fe_l(x)) |det <5f9 (x))|

12| M Arca = 0.04 Jacobian ~ 1.28 B Area ~ 0.08)
AA=0.0612 =2

Jacobian matrix

X1 f V1
Xn Yn
2l o
0X1 0X
a(yla e yn) _ *

(9(361, ey Xp)

Normalizing flow

» In contrast to VAEs the variable the variable z has the
same dimension of x.

» The function f should be deterministic and invertible

Flow Inverse

f(x) | f2

y
N

i
4

Px(x) = P (f5 ()

0fy ' (x)
det (P)

Learning and inference

» Learning with maximum likelihood

max log px (D; 0)) = Y “log pz (f;(x)) + log
xeD

» Sampling

z~ pz(z) x="fy(z)

» Latent representation

10

det (

Ofy * (x)

OX

Learning and inference

» Computing the determinant for an n X n matrix is
0 (n3): prohibitively expensive within a learning loop!

» Key idea: Choose transformations so that the resulting
Jacobian matrix has special structure. For example, the
determinant of a triangular matrix is the product of the
diagonal entries, i.e., an O(n) operation.

» Therefore, we have to only consider spatial family of
models which limits the ability of this approach.

11

NICE - Additive coupling layers

Partition the variables z into two disjoint subsets, say zy.4 and zg4. 1., for
any 1< d < n
@ Forward mapping z — x:
® X1.4 = Z1.4 (identity transformation)
® Xd+1:n = Zd+1:n + Mo(Z1:4) (Mg(-) is a neural network with parameters
6, d input units, and n — d output units)
@ |nverse mapping x — z:
® 7.4 = X1.4 (identity transformation)
® Zyi+1:n = Xd+1:n — mé’(xl:d)
@ Jacobian of forward mapping:

) l’d 0
J — & — {_r)xd 1
0z —=bn [

azl:d

det(J) =1

@ Volume preserving transformation since determinant is 1.
12

NICE - Additive coupling layers

(b) Model trained on TFD

(a) Model trained on MNIST

13

NICE - Additive coupling layers

E ﬂq‘i ‘l.ﬂ} ﬁ"'
(HEdE | O L

(¢) Model trained on SVHN (d) Model trained on CIFAR-10
14

Real-NVP: Non-volume preserving extension of NICE

@ Forward mapping z — x:
® X1.4 = Z1.4 (identity transformation)
® Xd+1:n = Zd+1:n @ EXP(GQ(Zl:d)) + H-E?(Zl:d)
o 1ip(-) and apg(-) are both neural networks with parameters ¢, d input
units, and n — d output units [© denotes elementwise product]
@ Inverse mapping x — z:
® Z1.4 = X1-4 (identity transformation)
® Zgi1:n — (xd—i—l:n — #-E»'(xl:d)) ® (exp(_aﬂ(xl:d)))
@ Jacobian of forward mapping:

_E)x

J B (ld 0)
T oz \ Bee diag(exp(ag(zia)))

det(J) = H exp(ap(z1:4)i) = exp (Z ag(zl;d);)

i=d+1 i=d+1

@ Non-volume preserving transformation in general since determinant'can

be less than or greater than 1
15

Real-NVP: Non-volume preserving extension of NICE

(a) Forward propagation (b) Inverse propagation

16

Real-NVP: Non-volume preserving extension of NICE

17

Continuous Autoregressive models as flow models

@ Consider a Gaussian autoregressive model:

p(x) = HP(XE\M:')

such that p(x; | x;) = N(pi(x1. -+, xi—1), exp(ai(x1, - -+ . xi—1))?).
Here, 11;(+) and a;(-) are neural networks for i > 1 and constants for
= 1.
@ Sampler for this model:
o Sample zi ~ N(0,1) fori=1,---,n
o Let x; = exp(a1)z1 + 1. Compute pa(x1), aa(x1)
o Let xo = exp(az)zz + 2. Compute p3(x1.Xx2), as(x1, x2)
o Let x3 =exp(az)zz + 3. ...
@ Flow interpretation: transforms samples from the standard Gaussian
(z1. 2. ..., z,) to those generated from the model (xi.x, Xp) Via
invertible transformations (parameterized by 1i;(+). i(-))

18

Masked Autoregressive Flow (MAF)

Transformed
distribution

distribution Al &2 |7 & & ‘ n

@ Forward mapping from z — x:

o Let x; =exp(ay)zy + 1. Compute po(xy1), az(x1)
o Let xo = exp(az)zz + 2. Compute p3(x1,x2), az(x1, x2)

e Sampling is sequential and slow (like autoregressive): O(n) time

19

Masked Autoregressive Flow (MAF)

Transformed
distribution

Base
distribution L e R

Zn

2 = (2 — ;) -exp(—a;) Yie {l...n}

@ Inverse mapping from x — z:

o Compute all i, vj (can be done in parallel using e.g., MADE)

o Let z; = (x3 — p1)/ exp(aq) (scale and shift)

o Let zo = (X2 — p2)/ exp(az)

o Let z3 = (x3 — p3)/ exp(as) ...
@ Jacobian is lower diagonal, hence efficient determinant computation
o Likelihood evaluation is easy and parallelizable (like MADE)

@ Layers with different variable orderings can be stacked

20

Inverse Autoregressive Flow (IAF)

z =z -exploy) + py ¥ie {1...n}
Transformed)
distribution | E2 @1 | @ | zq

T 4
4 —

Yy

| oo | i

N,
Base il s L
distribution =1 L2 | = Zn

@ Forward mapping from z +— x (parallel):

o Sample z; ~ N(0,1) fori=1,---.n
o Compute all uj, «vj (can be done in parallel)
o Let x; = exp(a1)z1 + 11
o Let xo = exp(az)za + p2 ..
@ Inverse mapping from x — z (sequential):
o Let z; = (x1 — p1)/ exp(ar). Compute po(z1), az(z1)
o Let z, = (X2 — p2)/ exp(az). Compute p3(z1, 22), as(z1, 22)
@ Fast to sample from, slow to evaluate likelihoods of data points (train)

@ Note: Fast to evaluate likelihoods of a generated point (cache z;, 2. ..\
21

|AF vs. MAF

=z -expla;) + s Vie{l...n}

Transformed .
istributi Ty T2 T 1 x; T
distribution i i i Transformed e |
distribution Tl Iz b1 | i T
' O‘D i
k 4
Base
distribution = zz ||z | & Zn ‘
Beso .
= (mi — I“_I.:} . EIP{ !.}_I:} Wie {1 L. ﬂ-} distribution

Figure: Inverse pass of MAF (left) vs. Forward pass of IAF (right)

@ Interchanging z and x in the inverse transformation of MAF gives the
forward transformation of |IAF

@ Similarly, forward transformation of MAF is inverse transformation of

|IAF

22

|AF vs. MAF

@ Computational tradeoffs

e MAF: Fast likelihood evaluation, slow sampling
e IAF: Fast sampling, slow likelihood evaluation

@ MAF more suited for training based on MLE, density estimation
@ |AF more suited for real-time generation

@ Can we get the best of both worlds?

23

