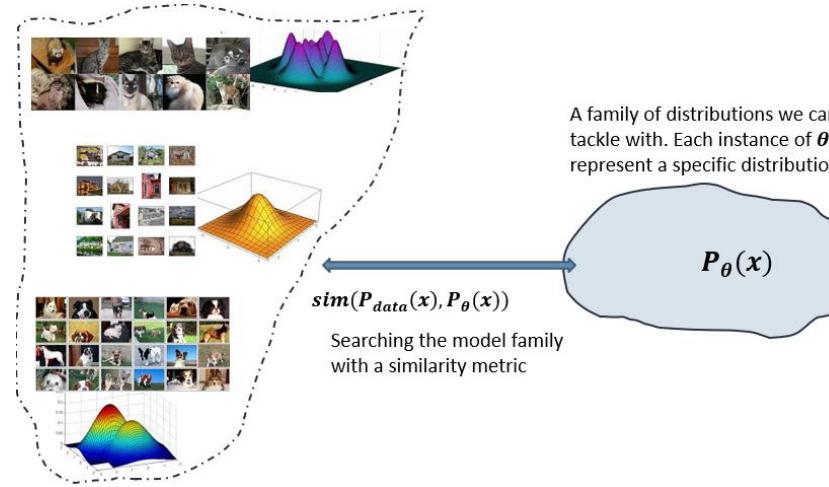


Normalizing flow

22-808: Generative models
Sharif University of Technology
Fall 2025

Fatemeh Seyyedsalehi

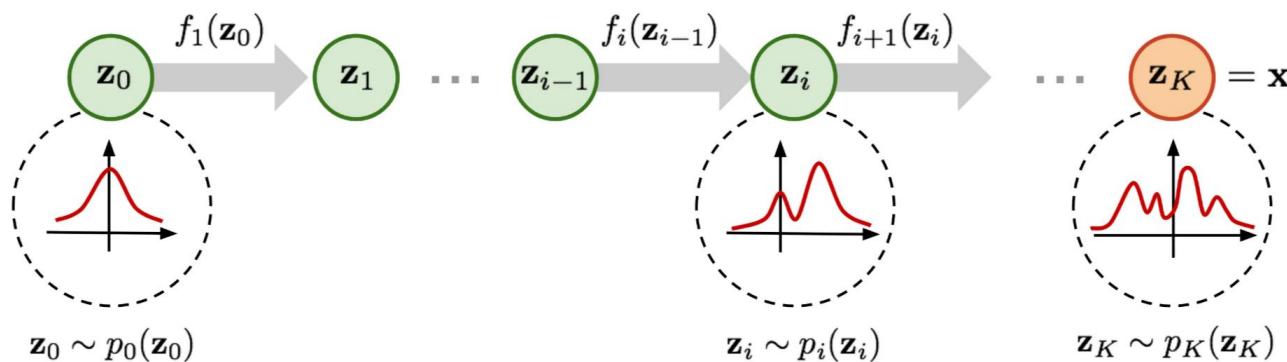
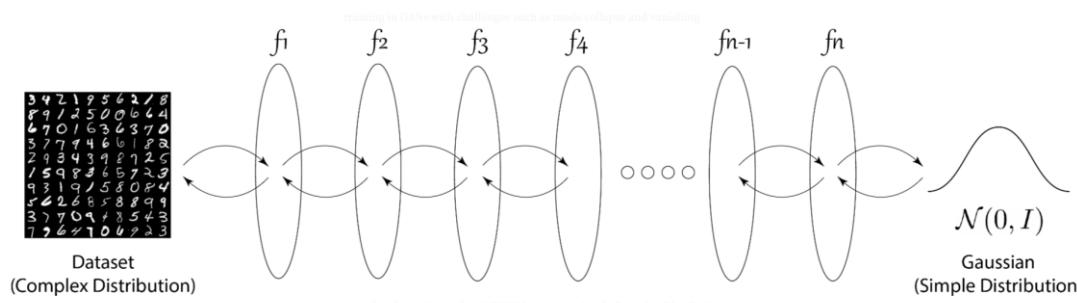
Recap



- ▶ We need a framework to interact with distributions for statistical generative models.
 - ▶ Probabilistic generative models
 - ▶ Deep generative models
 - ▶ Autoregressive models
 - ▶ Variational Autoencoders
 - ▶ Generative adversarial networks
 - ▶ **Normalizing Flow -> a latent variable model with tractable likelihood**

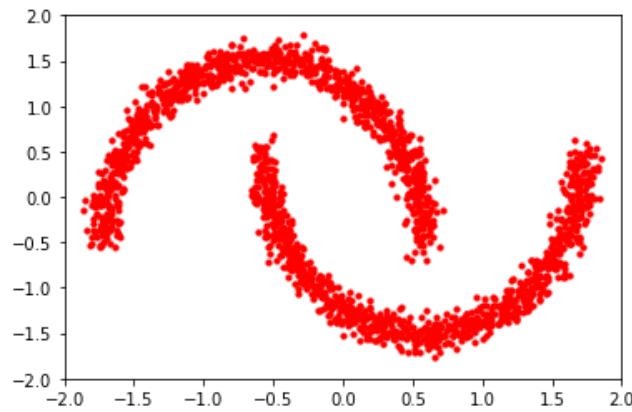
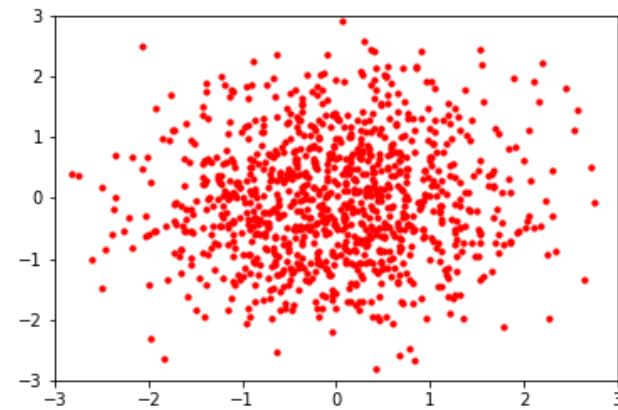
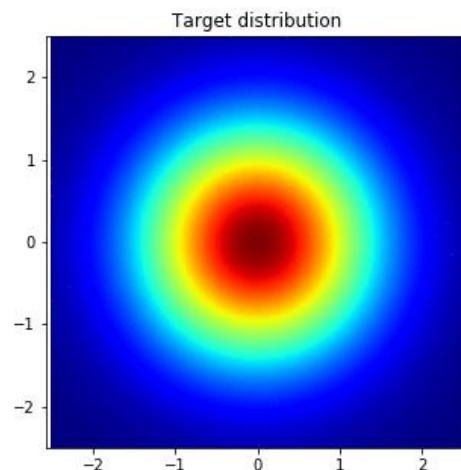
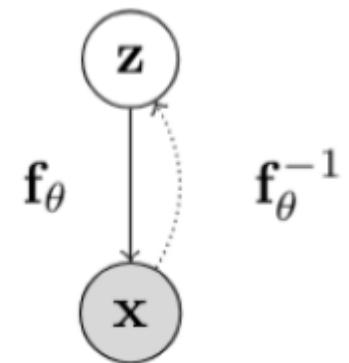
Motivation

- ▶ Any two distributions can be converted to each other 😊
 - ▶ Start from a simple distribution and convert it to reach a sufficiently complex one to describe the data distribution
 - ▶ Find conversions with neural networks



Motivation

- ▶ Any two distributions can be converted to each other 😊



Change of variable formula

- ▶ Imagine uniform random variable z on the green area
- ▶ We obtain another random variable $x = Az$

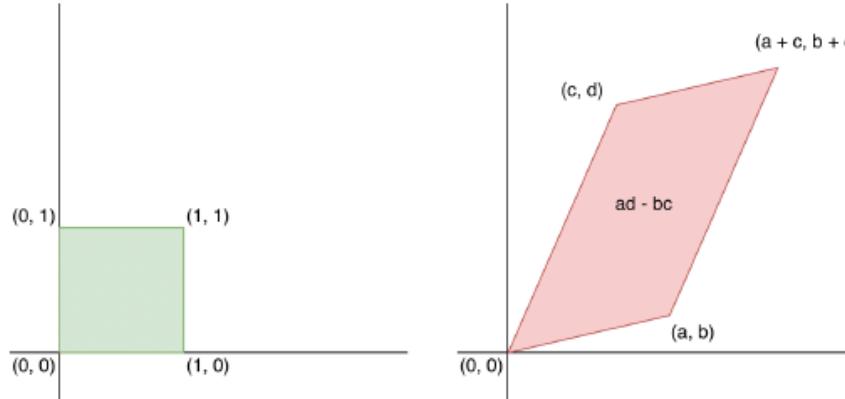
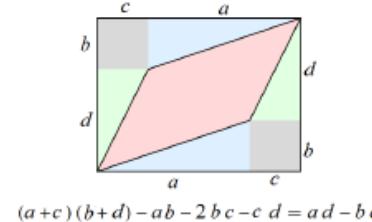


Figure: The matrix $A = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ maps a unit square to a parallelogram

Change of variable formula

- ▶ Imagine uniform random variable z on the green area
- ▶ We obtain another random variable $x = Az$
- ▶ The volume of the parallelotope is:

$$\det(A) = \det \begin{pmatrix} a & c \\ b & d \end{pmatrix} = ad - bc$$



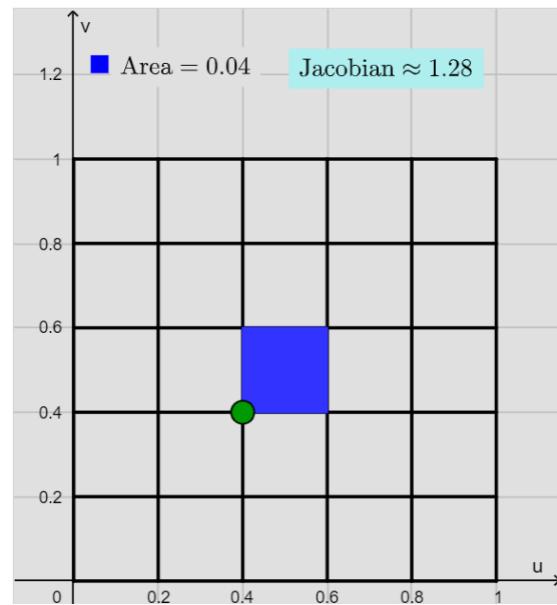
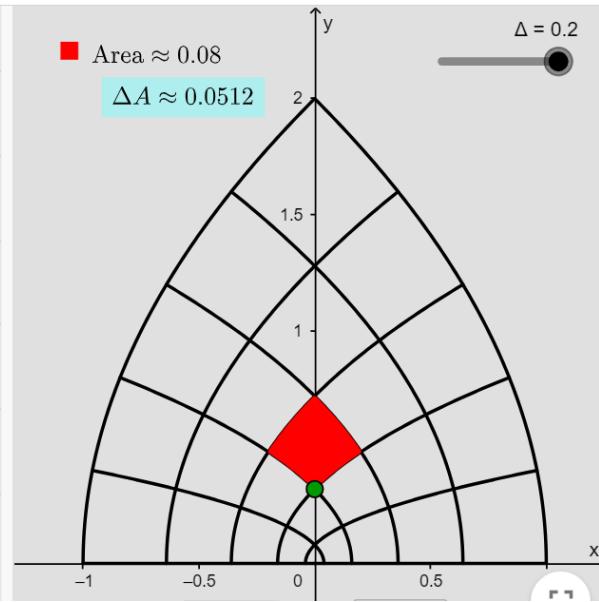
- ▶ As z uniformly distributed over the square, x is also uniformly distributed in this volume, therefore:

$$\begin{aligned} p_X(\mathbf{x}) &= p_Z(W\mathbf{x}) / |\det(A)| & W = A^{-1}, \det(W) = \frac{1}{\det(A)} \\ &= p_Z(W\mathbf{x}) |\det(W)| \end{aligned}$$

Generalized change of variable

- For an arbitrarily non-linear transformation f :

$$P_X(x) = P_Z\left(f_\theta^{-1}(x)\right) \left| \det\left(\frac{\partial f_\theta^{-1}(x)}{\partial x}\right) \right|$$



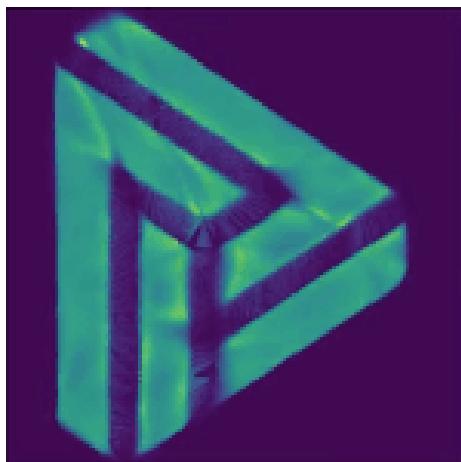
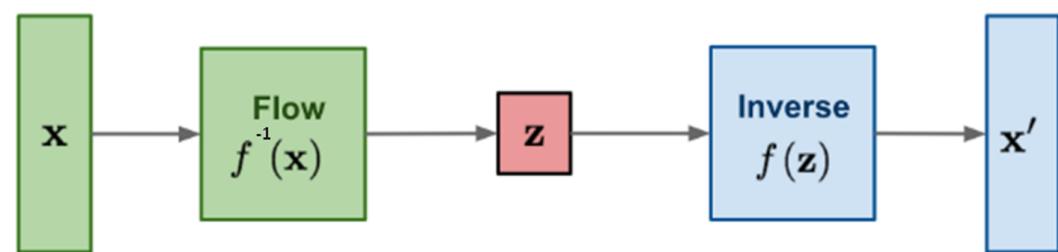
Jacobian matrix

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \xrightarrow{f} \mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$

$$\frac{\partial(y_1, \dots, y_n)}{\partial(x_1, \dots, x_n)} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \dots & \frac{\partial y_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_n}{\partial x_1} & \dots & \frac{\partial y_n}{\partial x_n} \end{bmatrix}$$

Normalizing flow

- ▶ In contrast to VAEs the variable the variable z has the same dimension of x .
- ▶ The function f should be **deterministic and invertible**



$$P_X(x) = P_Z\left(f_\theta^{-1}(x)\right) \left| \det\left(\frac{\partial f_\theta^{-1}(x)}{\partial x}\right) \right|$$

Learning and inference

- ▶ Learning with maximum likelihood

$$\max_{\theta} \log p_X(\mathcal{D}; \theta) = \sum_{x \in \mathcal{D}} \log p_Z(f_{\theta}^{-1}(x)) + \log \left| \det \left(\frac{\partial f_{\theta}^{-1}(x)}{\partial x} \right) \right|$$

- ▶ Sampling

$$z \sim p_Z(z) \quad x = f_{\theta}(z)$$

- ▶ Latent representation

$$z = f_{\theta}^{-1}(x)$$

Learning and inference

- ▶ Computing the determinant for an $n \times n$ matrix is $O(n^3)$: prohibitively expensive within a learning loop!
- ▶ **Key idea:** Choose transformations so that the resulting Jacobian matrix has **special structure**. For example, the determinant of a **triangular** matrix is the product of the diagonal entries, i.e., an $O(n)$ operation.
- ▶ Therefore, we have to only consider spatial family of models which limits the ability of this approach.

NICE - Additive coupling layers

Partition the variables \mathbf{z} into two disjoint subsets, say $\mathbf{z}_{1:d}$ and $\mathbf{z}_{d+1:n}$ for any $1 \leq d < n$

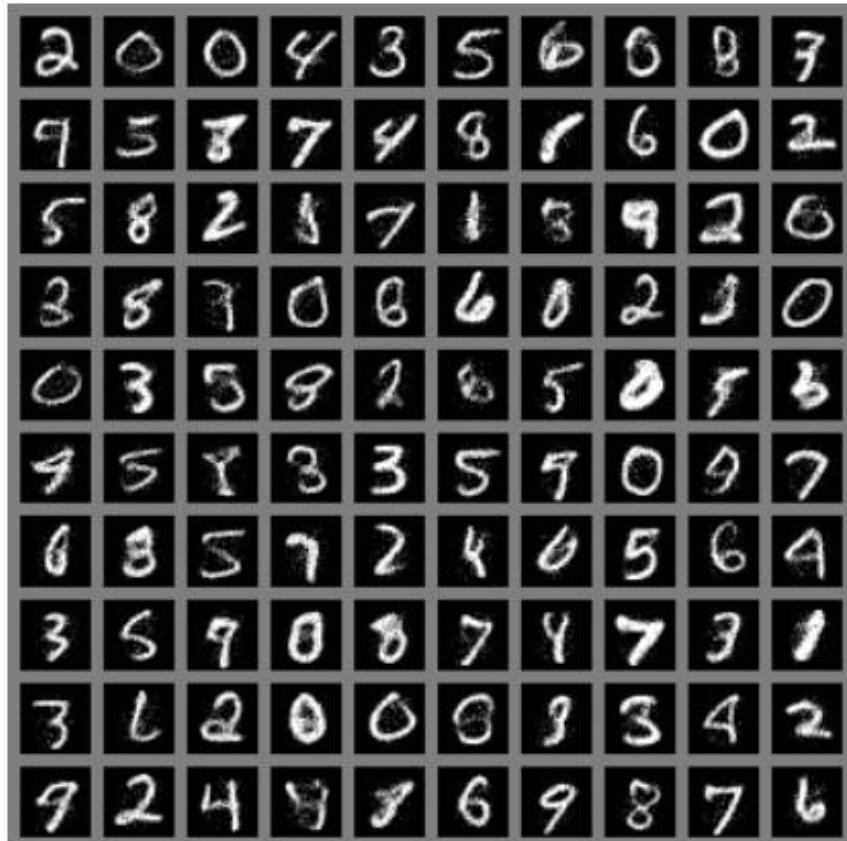
- Forward mapping $\mathbf{z} \mapsto \mathbf{x}$:
 - $\mathbf{x}_{1:d} = \mathbf{z}_{1:d}$ (identity transformation)
 - $\mathbf{x}_{d+1:n} = \mathbf{z}_{d+1:n} + m_\theta(\mathbf{z}_{1:d})$ ($m_\theta(\cdot)$ is a neural network with parameters θ , d input units, and $n - d$ output units)
- Inverse mapping $\mathbf{x} \mapsto \mathbf{z}$:
 - $\mathbf{z}_{1:d} = \mathbf{x}_{1:d}$ (identity transformation)
 - $\mathbf{z}_{d+1:n} = \mathbf{x}_{d+1:n} - m_\theta(\mathbf{x}_{1:d})$
- Jacobian of forward mapping:

$$J = \frac{\partial \mathbf{x}}{\partial \mathbf{z}} = \begin{pmatrix} I_d & 0 \\ \frac{\partial \mathbf{x}_{d+1:n}}{\partial \mathbf{z}_{1:d}} & I_{n-d} \end{pmatrix}$$

$$\det(J) = 1$$

- **Volume preserving transformation** since determinant is 1.

NICE - Additive coupling layers



(a) Model trained on MNIST

(b) Model trained on TFD

NICE - Additive coupling layers

(c) Model trained on SVHN

(d) Model trained on CIFAR-10

Real-NVP: Non-volume preserving extension of NICE

- Forward mapping $\mathbf{z} \mapsto \mathbf{x}$:
 - $\mathbf{x}_{1:d} = \mathbf{z}_{1:d}$ (identity transformation)
 - $\mathbf{x}_{d+1:n} = \mathbf{z}_{d+1:n} \odot \exp(\alpha_\theta(\mathbf{z}_{1:d})) + \mu_\theta(\mathbf{z}_{1:d})$
 - $\mu_\theta(\cdot)$ and $\alpha_\theta(\cdot)$ are both neural networks with parameters θ , d input units, and $n - d$ output units [\odot denotes elementwise product]
- Inverse mapping $\mathbf{x} \mapsto \mathbf{z}$:
 - $\mathbf{z}_{1:d} = \mathbf{x}_{1:d}$ (identity transformation)
 - $\mathbf{z}_{d+1:n} = (\mathbf{x}_{d+1:n} - \mu_\theta(\mathbf{x}_{1:d})) \odot (\exp(-\alpha_\theta(\mathbf{x}_{1:d})))$
- Jacobian of forward mapping:

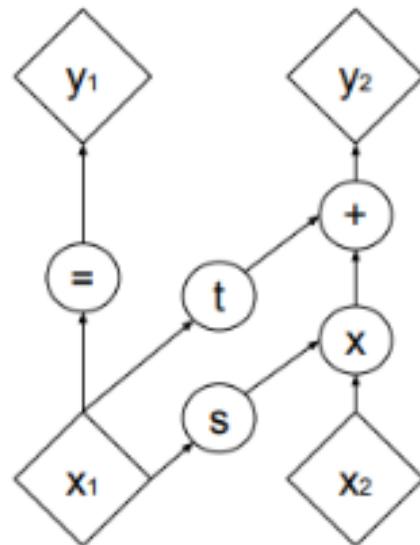
$$J = \frac{\partial \mathbf{x}}{\partial \mathbf{z}} = \begin{pmatrix} I_d & 0 \\ \frac{\partial \mathbf{x}_{d+1:n}}{\partial \mathbf{z}_{1:d}} & \text{diag}(\exp(\alpha_\theta(\mathbf{z}_{1:d}))) \end{pmatrix}$$

$$\det(J) = \prod_{i=d+1}^n \exp(\alpha_\theta(\mathbf{z}_{1:d})_i) = \exp \left(\sum_{i=d+1}^n \alpha_\theta(\mathbf{z}_{1:d})_i \right)$$

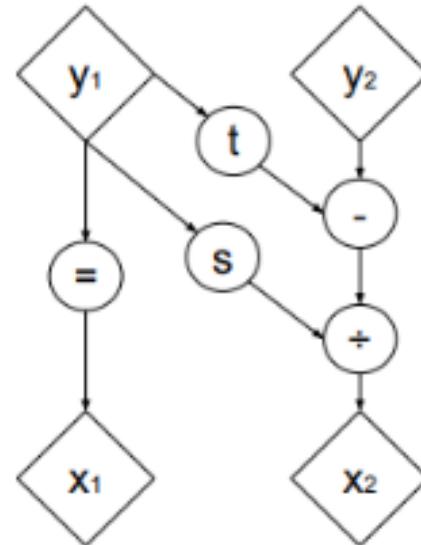
- **Non-volume preserving transformation** in general since determinant Active can be less than or greater than 1

Go to S

Real-NVP: Non-volume preserving extension of NICE

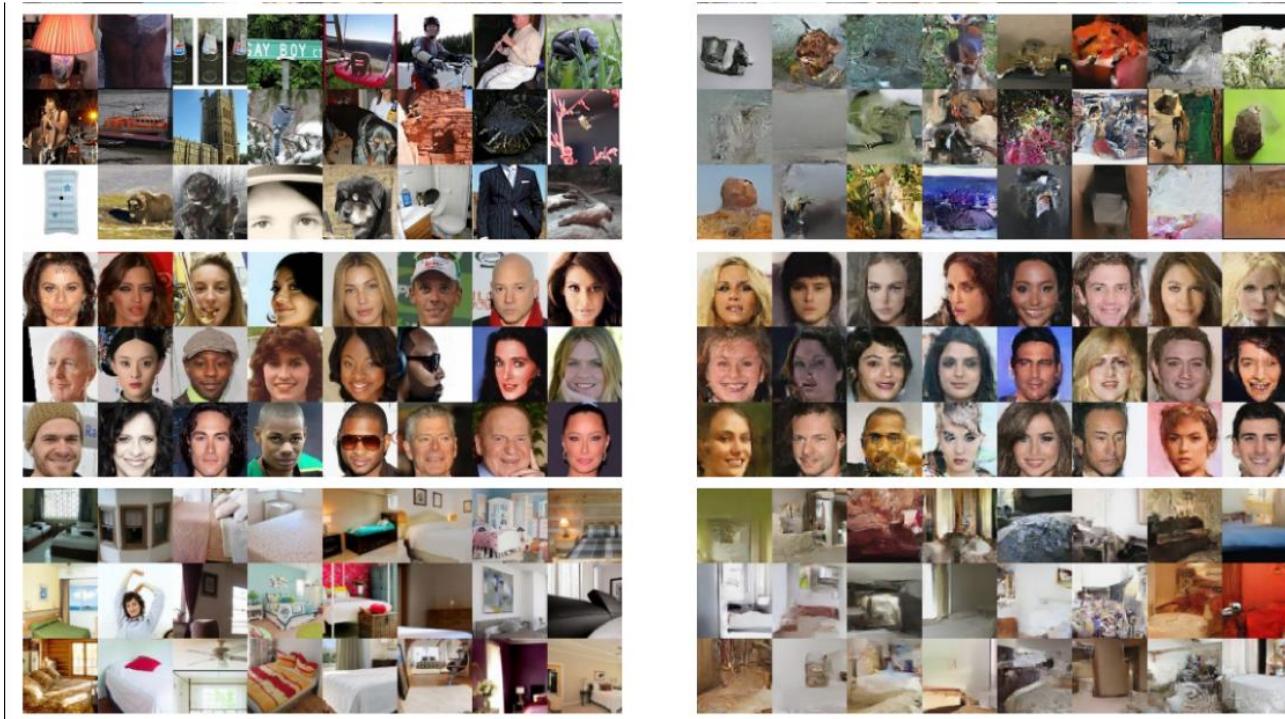


(a) Forward propagation



(b) Inverse propagation

Real-NVP: Non-volume preserving extension of NICE



Continuous Autoregressive models as flow models

- Consider a Gaussian autoregressive model:

$$p(\mathbf{x}) = \prod_{i=1}^n p(x_i | \mathbf{x}_{<i})$$

such that $p(x_i | \mathbf{x}_{<i}) = \mathcal{N}(\mu_i(x_1, \dots, x_{i-1}), \exp(\alpha_i(x_1, \dots, x_{i-1}))^2)$.

Here, $\mu_i(\cdot)$ and $\alpha_i(\cdot)$ are neural networks for $i > 1$ and constants for $i = 1$.

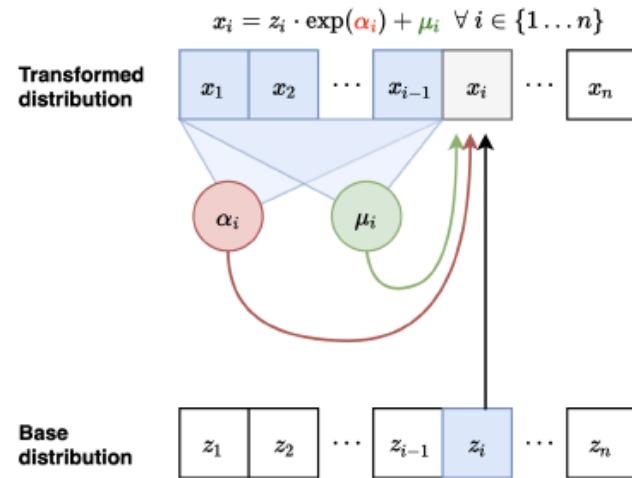
- Sampler for this model:

- Sample $z_i \sim \mathcal{N}(0, 1)$ for $i = 1, \dots, n$
- Let $x_1 = \exp(\alpha_1)z_1 + \mu_1$. Compute $\mu_2(x_1), \alpha_2(x_1)$
- Let $x_2 = \exp(\alpha_2)z_2 + \mu_2$. Compute $\mu_3(x_1, x_2), \alpha_3(x_1, x_2)$
- Let $x_3 = \exp(\alpha_3)z_3 + \mu_3$

- Flow interpretation:** transforms samples from the standard Gaussian (z_1, z_2, \dots, z_n) to those generated from the model (x_1, x_2, \dots, x_n) via invertible transformations (parameterized by $\mu_i(\cdot), \alpha_i(\cdot)$)

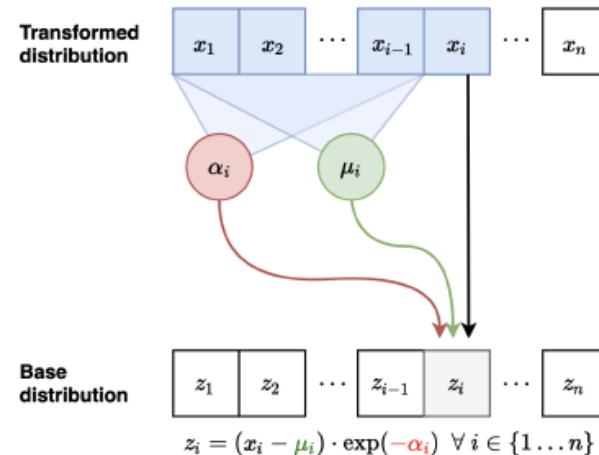
Activat
Go to Set

Masked Autoregressive Flow (MAF)



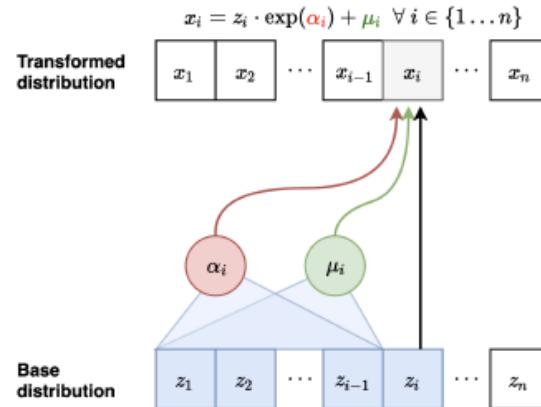
- Forward mapping from $\mathbf{z} \mapsto \mathbf{x}$:
 - Let $x_1 = \exp(\alpha_1)z_1 + \mu_1$. Compute $\mu_2(x_1), \alpha_2(x_1)$
 - Let $x_2 = \exp(\alpha_2)z_2 + \mu_2$. Compute $\mu_3(x_1, x_2), \alpha_3(x_1, x_2)$
- Sampling is sequential and slow (like autoregressive): $O(n)$ time

Masked Autoregressive Flow (MAF)



- Inverse mapping from $\mathbf{x} \mapsto \mathbf{z}$:
 - Compute **all** μ_i, α_i (can be done in parallel using e.g., MADE)
 - Let $z_1 = (x_1 - \mu_1) / \exp(\alpha_1)$ (scale and shift)
 - Let $z_2 = (x_2 - \mu_2) / \exp(\alpha_2)$
 - Let $z_3 = (x_3 - \mu_3) / \exp(\alpha_3)$...
- Jacobian is lower diagonal, hence efficient determinant computation
- Likelihood evaluation is easy and parallelizable (like MADE)
- Layers with different variable orderings can be stacked

Inverse Autoregressive Flow (IAF)



- Forward mapping from $\mathbf{z} \mapsto \mathbf{x}$ (parallel):
 - Sample $z_i \sim \mathcal{N}(0, 1)$ for $i = 1, \dots, n$
 - Compute all μ_i, α_i (can be done in parallel)
 - Let $x_1 = \exp(\alpha_1)z_1 + \mu_1$
 - Let $x_2 = \exp(\alpha_2)z_2 + \mu_2 \dots$
- Inverse mapping from $\mathbf{x} \mapsto \mathbf{z}$ (sequential):
 - Let $z_1 = (x_1 - \mu_1) / \exp(\alpha_1)$. Compute $\mu_2(z_1), \alpha_2(z_1)$
 - Let $z_2 = (x_2 - \mu_2) / \exp(\alpha_2)$. Compute $\mu_3(z_1, z_2), \alpha_3(z_1, z_2)$
- Fast to sample from, slow to evaluate likelihoods of data points (train)
- Note: Fast to evaluate likelihoods of a generated point (cache z_1, z_2, \dots, z_n)

IAF vs. MAF

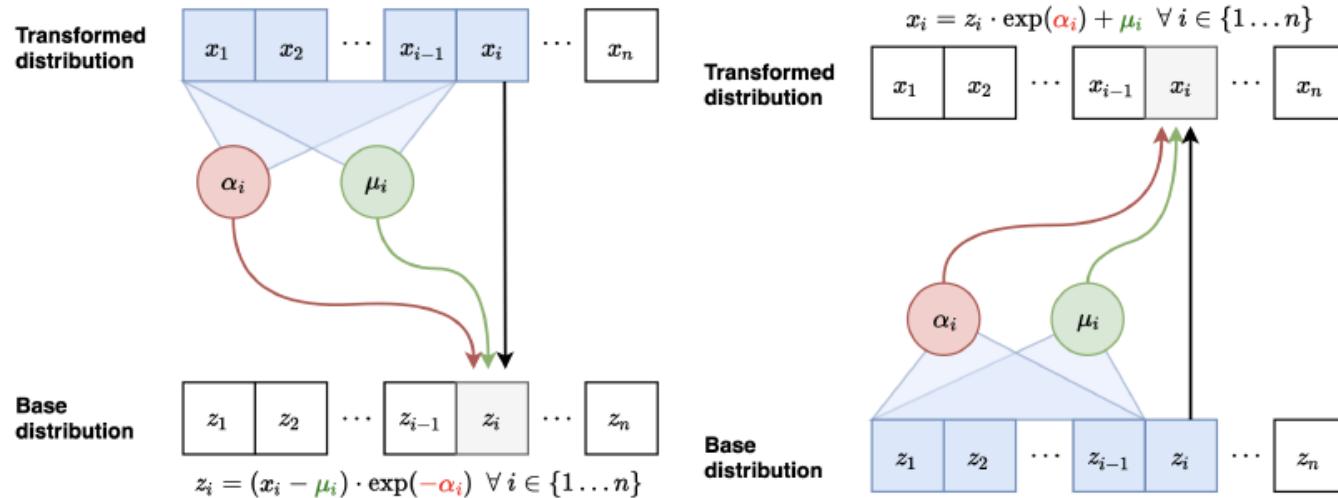


Figure: Inverse pass of MAF (left) vs. Forward pass of IAF (right)

- Interchanging \mathbf{z} and \mathbf{x} in the inverse transformation of MAF gives the forward transformation of IAF
- Similarly, forward transformation of MAF is inverse transformation of IAF

Activat

IAF vs. MAF

- Computational tradeoffs
 - MAF: Fast likelihood evaluation, slow sampling
 - IAF: Fast sampling, slow likelihood evaluation
- MAF more suited for training based on MLE, density estimation
- IAF more suited for real-time generation
- Can we get the best of both worlds?