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Recap. of last lecture

d(Pdatan PG)

Plata
6eM
Model family
o Energy-based models: py(x) = %.

e Z(0) is intractable, so no access to likelihood.
o Comparing the probability of two points is easy:
po(X')/po(x) = exp(fy(x') — fy(x)).
@ Maximum likelihood training: maxg{fy(X¢rain) — log Z(0)}.
o Contrastive divergence:

vefe(xtrain) - V@ |0g Z(e) ~ vGfB(XL‘rain) - vGfﬁ’(xsamp/e)a

where Xgampre ~ po(X).
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Sampling from EBMs: MH-MCMC

Metropolis-Hastings Markov chain Monte Carlo (MCMC).
0 x° ~ 7(x)
@ Repeat fort=0,1,2,---, T — 1:
o x' =x! + noise
o xItl =x'if fo(x') > fo(x?)
o If fy(x') < fy(x*'), set x**1 = x" with probability exp{fy(x") — fy(x*)},
otherwise set x*1 = xt.
Properties:
o In theory, x” converges to py(x) when T — co. Why?

o Satisfies detailed balance condition: pp(x) Tx—x = po(X') Tx —x Where
Tx_sx is the probability of transitioning from x to x’
o If xt is distributed as pg, then xt+1 is distributed as pg.

@ In practice, need a large number of iterations and convergence slows
down exponentially in dimensionality.
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Sampling from EBMs: unadjusted Langevin MCMC

Unadjusted Langevin MCMC:

0 x° ~ 7(x)
© Repeat fort=0,1,2,---, T —1:
o z' ~ N(0,])
o xIT1 = xt + €V, log pg(X)|xext + V2¢z*
Properties:

o x converges to a sample from py(x) when T — 0o and ¢ — 0.

@ Vylog py(x) = Vify(x) for continuous energy-based models.

o Convergence slows down as dimensionality grows.

Sampling converges slowly in high dimensional spaces and is thus very
expensive, yet we need sampling for each training iteration in contrastive
divergence.
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Today's lecture

d(Pdata' PB)

Pdata

6eM

Model family

Goal: Training without sampling
@ Score Matching
@ Noise Contrastive Estimation

@ Adversarial training
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Score function

Energy-based model: py(x) = % , log pg(x) = f(x) — log Z(0)
(Stein) Score function:

SG(X) := Vxlog pg(X) = fog(x) — Vi log Z(G) = vxfﬁ(x)

@ Gaussian distribution2 s % YL\ -
(x—p) P S R AP SN
—_1 o o
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po(x) vs. sp(x)
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Score matching

Observation

sp(x) = Vi log pp(x) is independent of the partition function Z(9).

Fisher divergence between p(x) and g(x):

1
De(p, q) = 5 Eepll| Vx log p(x) — Vi log g(x)|[3]

Score matching: minimizing the Fisher divergence between py.ta(x) and
the EBM py(x) ox exp{fy(x)}

1
5 Exepaa [||Vx l0g paata(x) — so(x)|13]
1

= 5 Bxopus || V108 Paata(x) — Vxfy(x)I3]

Stefano Ermon (Al Lab) Deep Generative Models Lecture 12 7/1



Score matching

1

5 Expa [ Vx 108 Paata (X) — Vi log pp(x) 3]

How to deal with Vy log pyata(X) given only samples? Integration by parts!
%Exwpdm [(Vx log pdata(x) — Vi log pg(x))?]  (Univariate case)
= 3 [ Paata (X)[(Vx log paata(x) — Vi log pa(x))?]dx
=1 [ paata(X)(Vx 10g Pata (x))2dx 4 1 [ paaca () (V. log po(x))?dx
— [ Pdata(x) Vx 10g pyata (x) Vx log pg (x)dx
Recall Integration by parts: [ f'g = fg — [ g'f.

— J Pdata(x) Vx 10g pdata(x) Vix log pg (x)dx
= — [ Pdata(x) 5y VxPdata (X) Vix log pg (x)dx
= —Pdata(x)Vx log po(x)IS2 _ o + [ Pdata(x) V5 log po (x)dx

0
= / Pdata(x)vg< log p()(x)dx

Note: we need to assume pyaia decays sufficiently rapidly, pgata(x) — 0

when x — +o0.
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Score matching

Univariate score matching

%ExNPdata [(Vx log pdata(x) — Vx log PO(X))Z]
= % f pdata(X)(vx log pdata(X))2dX + % / Pdata(x)(vx log p()(X))2(1X

- [ pdata(X)vx |Og pdata(X)vx |Og pg(X)dX

1

= 5 /pdata(x)(vx log pdata(X))2dX + % / pdata(x)(vx log p()(X))2(1X

const. wrt 6
+[ Pdata(x) V2 log pg(x)dx
= Exmpgans [5 (Vi l0g po(x))? + V2 log py(x)] + const.
Multivariate score matching (integration by parts, i.e. Gauss theorem)
1

EEX’Vpdata [[|Vx log pdata(x) — Vx log pa(x) ”%]

1
=Ex~piara bllvx log pa(x)|13 + tr( " Vi log po(x) )] + const.

Hessian of log pg(x)
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Score matching

@ Sample a mini-batch of datapoints {x1,X2, "+ ,Xn} ~ Pdata(X)-
@ Estimate the score matching loss with the empirical mean

1l
3" [519xlog po(x) I + tr(V2 log po(x,))]
i=1
1l
= Z {fHfoe(x,)H% + trace(V,z(fe(Xi))]
ni:l 2

© Stochastic gradient descent.
@ No need to sample from the EBM!

Computing the trace of Hessian tr(V2log py(x)) is in general very
expensive for large models.

Denoising score matching (Vincent 2010) and sliced score matching (Song
et al. 2019). More on this in the next lecture!
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6eM

Model family

Distances used for training energy-based models.

o KL divergence = maximum likelihood.

Vofy(Xdata) — fy(Xsample) ~(contrastive divergence)

o Fisher divergence = score matching.

1

> Eepeaal1 V108 Pasia(x) — Vo (3)]3]
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Noise contrastive estimation

Learning an energy-based model by contrasting it with a noise distribution.
e Data distribution: pgata(X).
e Noise distribution: pp(x). Should be analytically tractable and easy to
sample from.
e Training a discriminator Dy(x) € [0, 1] to distinguish between data
samples and noise samples.

2% B 108 Dy ()] + Eep,[l08(1 — Dy(x))]

e What is the Optimal discriminator Dg-(x)?

Pdata (X)

Do (%) = a0 + pa(x)
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Noise contrastive estimation

What if the discriminator is parameterized by

po(x)
Dy(x) = — 20X
0= ) + b
@ The optimal discriminator Dy-(x) satisfies
po+(x) Pdata(X)
D * | X) = =
o () po-(X) + Pn(X)  Pdata(X) + pn(X)

@ By training the discriminator, we are implicitly learning
Po+(X) & pdata(X). Particularly suitable for cases where py(x) is
defined up to a normalization constant (EBMs)
e Equivalently,
Pn(x)Dg+ (x)
1-— Dg* (X)
Classifier is used to correct density estimates from p,. Can be used to
improve a base generative model (Boosted Generative Models, Grover
et al., 2018)
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Noise contrastive estimation for training EBMs

Energy-based model:
efﬂ(x)

pg(X) = 2(9)

The constraint Z(#) = [ e?X)dx is hard to satisfy.
Solution: Modeling Z(#) with an additional trainable parameter Z that is
not explicitly constrained to satisfy Z = [ e dx.
efo(x)
V4
With noise contrastive estimation, the optimal parameters 6*, Z* are

po.z(x) =

efor (x)

2R = Pdata(X)

The optimal parameter Z* is the correct partition function, because
efQ*(x) £
/ 7 dx = /pdata(x)dx =1 = Z"= /e o= (%) dx
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Noise contrastive estimation for training EBMs

The discriminator Dy z(x) for probabilistic model py 7(x) is

efQZ(X) ef9 (X)
Do.z(x) = —+ =
O palx) "W+ pa(x)Z

Noise contrastive estimation training

Max Ex~peuia[108 Do,z (X)] + Ex~p,[log(1 — Do, z(x))]

)

Equivalently,

Max By, [fo (%) — log(e"® + Zpy(x))]

)

+ Exupy[l08(Zpn(x)) — log(e™™ + Zp,(x))]
Log-sum-exp trick for numerical stability:
log(e®) + Zp,(x)) = log(e*) + ¢l°o8 ZHlogpnlx))
— logsumexp(fy(x), log Z + log pa(x))
Stefano Ermon (Al Lab)
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Noise contrastive estimation for training EBMs

@ Sample a mini-batch of datapoints X1,X2, -+ ,Xn ~ Pdata(X)-
@ Sample a mini-batch of noise samples y1,y2,- -+ ,¥n ~ pa(y).
© Estimate the NCE loss.

1 n
=" [fa(x;) — logsumexp(fi(x;), log Z + log pa(x:))
i=1

+ log Z + pn(yi) — logsumexp(fs(y;), log Z + log pa(yi))]

@ Stochastic gradient ascent with respect to 6 and Z.
© No need to sample from the EBM!
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Comparing NCE and GAN

Similarities:
@ Both involve training a discriminator to perform binary classification
with a cross-entropy loss.
o Both are likelihood-free (recall likelihood not tractable in EBM).
Differences:

@ GAN requires adversarial training or minimax optimization for
training, while NCE does not.

@ NCE requires the likelihood of the noise distribution for training, while
GAN only requires efficient sampling from the prior.

@ NCE trains an energy-based model, while GAN trains a deterministic
sample generator.
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Flow contrastive estimation (Gao et al. 2020)

Observations:
@ We need to both evaluate the probability of p,(x), and sample from it
efficiently.
@ We hope to make the classification task as hard as possible, i.e.,
pn(x) should be close to pgata(x) (but not exactly the same).
Flow contrastive estimation:
@ Parameterize the noise distribution with a normalizing flow model
Pn,g(X)-
o Parameterize the discriminator Dy 7 4(x) as

efo™ o (x)
_ Z _ €
Do’zvd)(x) - fg(x) -

e'o

2 4 pnp(x)  €"P F Pag(x)Z

@ Train the flow model to minimize Ds(Pdata; Pn.¢):

Min MaX B pyoes 108 Do.2.6(X)] + Bxevpy o [log(1 = Do.z,6(x))]
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Flow contrastive estimation (Gao et al. 2020)

LA an it
R-10, and CelebA datasets.

Image source: Gao et al. 2020.
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