Introduction

22-808: Generative models Sharif University of Technology Fall 2025

Fatemeh Seyyedsalehi

Course info.

- Lecturer: Fatemeh Seyyedsalehi
 - Contact: <u>fateme.ssalehi@gmail.com</u>
- ▶ Head TA: Maryam Rezaie
 - Contact: ?
- Course website: On Quera Github
 - Tentative schedule, lectures
 - Policies and rules
 - Discussions
 - HWs & solutions

Grading policy

	Mid-term exam:	4
	Final exam:	6
>	Homework (5 practical and conceptual HWs):	10+1

Text books and related courses

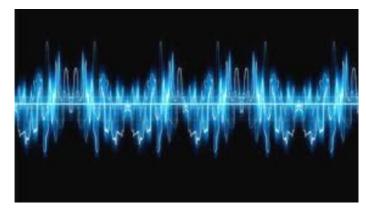
Books:

- Bishop, Christopher M. and Hugh Bishop, Deep Learning: Foundations and Concepts, Springer
- Murphy, Kevin P, Probabilistic Machine Learning: Advanced Topics, The MIT Press
- Tomczak, Jakub M., Deep Generative Modeling, Springer
- Koller D., Friedman N., Probabilistic Graphical Models, Principles and Techniques, The MIT Press
- Courses with similar topics from other institutions:
 - Stanford CS-236: Deep Generative Models
 - CMU18-789:Deep Generative Models
 - Washington CSE-599: Generative Models
 - Berkeley CS 294-158: Deep Unsupervised Learning

Introduction

We should understand complex and unstructured phenomenon to be able to generate them

Audio signals

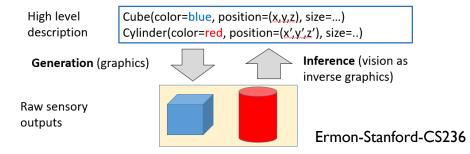


Natural images

Natural languages

Introduction

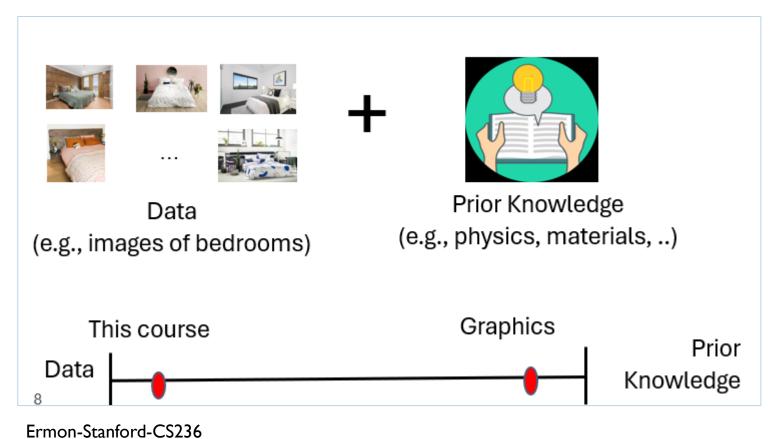
- Our tools to understand phenomenon is statistics
 - In contrast to rule based techniques



- We use probability distributions to describe any thing
 - Images
 - Sentences
 - Videos
 - Audios
 - ...

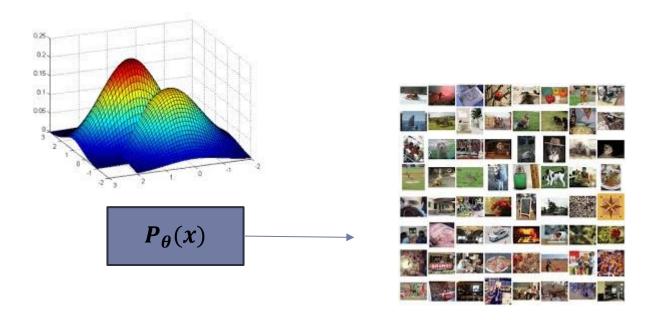
Statistical generative models

- Statistical generative models are learned from data
- Priors are always necessary, but there is a spectrum



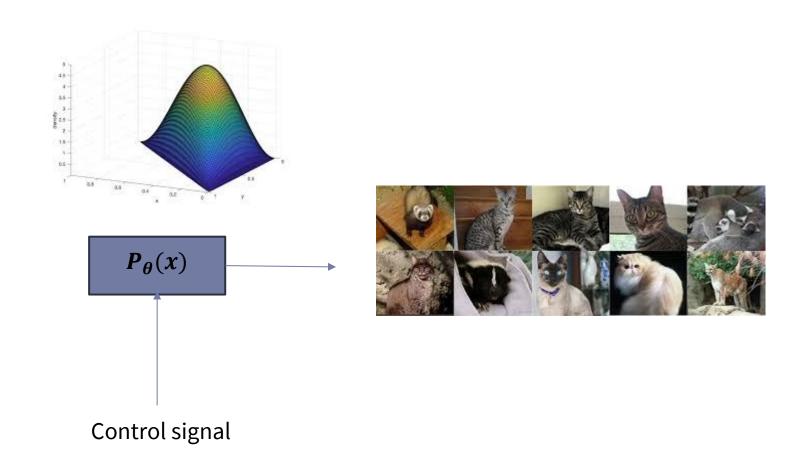
Statistical generative models

- A statistical generative model is a probability distribution P(x)
- It is generative because sampling from p(x) generates new images



Statistical generative models

- We also can control the process of generation
 - Conditional generative models



Generative model examples Image generation

- This person does not exist!
 - https://thispersondoesnotexist.com/

Generative model examples Image generation

- OpenAl Dall-E
 - https://openai.com/index/dall-e/
- Prompt: "A photorealistic image of an astronaut riding a horse"

Prompt: "A store front that has the word 'OpenAI' written on it"

Generative model examples Video generation

Prompt: "A couple sledding down a snowy hill on a tire roman chariot style"

Prompt: "Suddenly, the walls of the embankment broke and there was a huge flood"

Generative model examples Video generation

- Deepfake
 - https://deepfakesweb.com/projects

Generative model examples Code generation

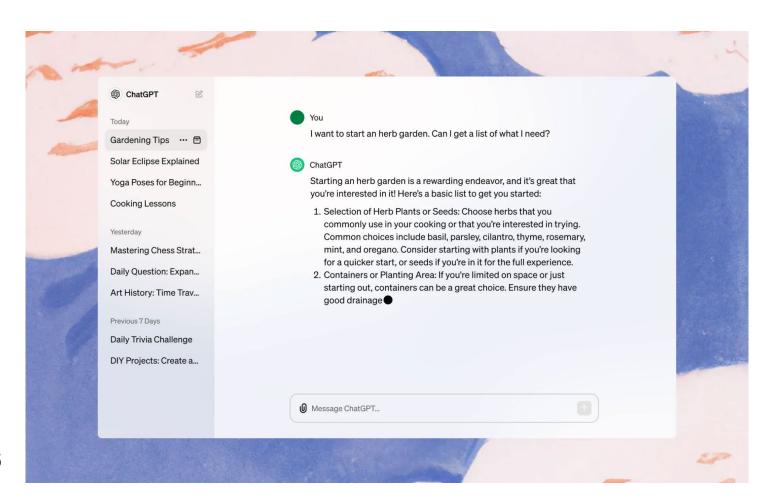
- OpenAl Codex
 - https://openai.com/index/openai-codex/

```
🔏 addresses.rb
parse_expenses.py
                    -∞ write sal.ao
                                   rs sentiment.ts
 1 import datetime
 3 def parse_expenses(expenses_string):
        """Parse the list of expenses and return the list of triples (date, va
```

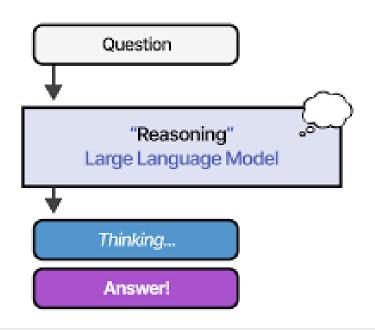
Generative model examples Language generation

OpenAl ChatGPT

https://openai.com/chatgpt/



Reasoning



Generative model examples Speech generation

▶ مدل متن به گفتار فارسی

"برای موفقیت در درس یادگیری مولد، حضور در کلاس، مطالعه فردی و انجام به موقع تمرینات لازم است. این حوزه امروزه یکی از موضوعات به روز هم در دنیای تحقیقات و هم در حوزه صنعت به شمار می رود."

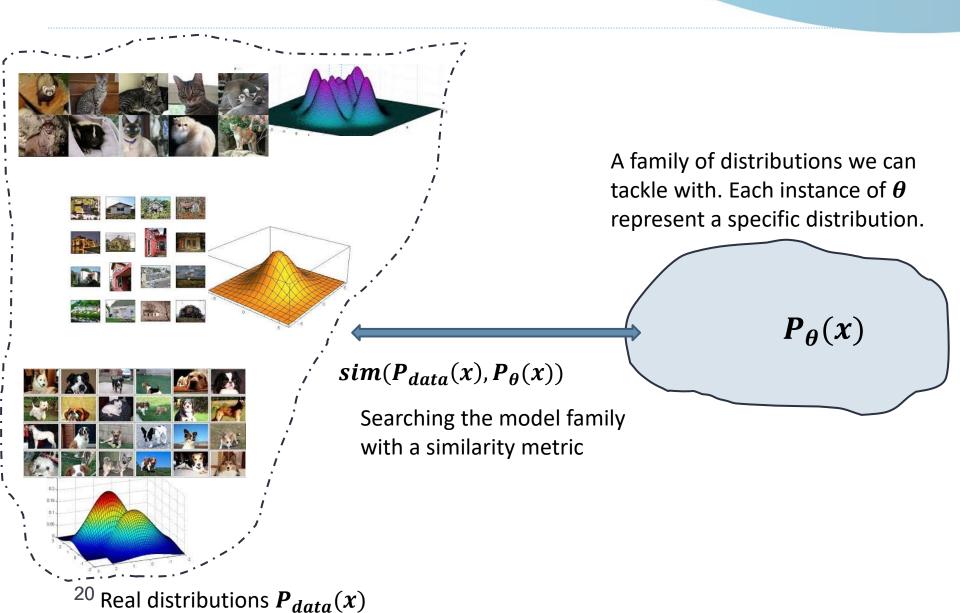
Foundation models

- The term of foundation model describes large ML models trained on a broad spectrum of generalized and unlabeled data
 - The ability of performing a wide variety of general tasks such as understanding language, generating text and images, and conversing in natural language
- They changed the way data scientists approach machine learning
 - Rather than developing from scratch, a foundation model can be used as a starting point to develop ML models that power new applications more quickly and cost-effectively.
- A good paper:
 - "On the Opportunities and Risks of Foundation Models"

Course overview

- (Probabilistic graphical models) Directed (Bayesian networks) and undirected (Markov random fields))
 - Exact and approximate inference Learning from complete and incomplete data
- ▶ (Deep generative models) Autoregressive Models
 - The NADE Framework
 - Text modeling, LSTM and Transformers, Intro. to large language models
- Variational Autoencoders
- Generative Adversarial Nets
 - f-GANs & Wasserstein GANs
- Generative Flow
- Energy-Based Models
 - Stein's Method and Score Matching
- Langevin Dynamics and Diffusions
- Flow Matching
- LLM and LMM
- LLM emergent abilities and reasoning

The generation problem

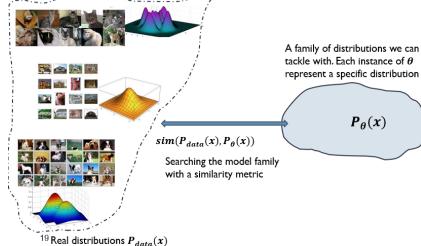


The generation problem

- Once we learn $P_{\theta}(x)$,
 - We can **generate** $x \sim P_{\theta}(x)$ that should look like a real sample
 - We can approximate the function (density estimation problem) the density of a sample, i.e. the value of $P_{\theta}(x)$
 - Useful in anomaly detection
 - However, generation is usually easier than density estimation problem

We can discover features of the space in an unsupervised

manner.



- We should represent distribution spaces in a way we could tackle with
 - Optimization, generation, density estimation, inference, ...

- Our approaches
 - Basic parametric distributions
 - Probabilistic graphical models
 - Deep neural networks
- Restricting to a parametric family of functions regularizes the problem.

- Bernoulli distribution: (biased) coin flip
 - $D = \{Heads, Tails\}$
 - Specify P(X = Heads) = p. Then P(X = Tails) = 1 p.
 - Write: $X \sim Ber(p)$
 - Sampling: flip a (biased) coin
- Categorical distribution: (biased) m-sided dice
 - $D = \{1, \cdots, m\}$
 - Specify $P(Y = i) = p_i$, such that $\sum p_i = 1$
 - Write: $Y \sim Cat(p_1, \cdots, p_m)$
 - Sampling: roll a (biased) die

- Suppose $X_1, ..., X_n$ are binary (Bernoulli) random variables, i.e., $Val(X_i) = \{0, 1\} = \{Black, White\}.$
- How many possible images (states)?

$$\underbrace{2 \times 2 \times \cdots \times 2}_{n \text{ times}} = 2^n$$

- Sampling from $p(x_1, \ldots, x_n)$ generates an image
- How many parameters to specify the joint distribution $p(x_1, ..., x_n)$ over n binary pixels?

$$2^{n}-1$$

• If X_1, \ldots, X_n are independent, then

$$p(x_1,\ldots,x_n)=p(x_1)p(x_2)\cdots p(x_n)$$

- How many possible states? 2ⁿ
- How many parameters to specify the joint distribution $p(x_1, \ldots, x_n)$?
 - How many to specify the marginal distribution $p(x_1)$? 1
- 2^n entries can be described by just n numbers (if $|Val(X_i)| = 2$)!
- Independence assumption is too strong. Model not likely to be useful
 - For example, each pixel chosen independently when we sample from it.

Using Chain Rule

$$p(x_1,\ldots,x_n)=p(x_1)p(x_2\mid x_1)p(x_3\mid x_1,x_2)\cdots p(x_n\mid x_1,\cdots,x_{n-1})$$

- How many parameters? $1 + 2 + \cdots + 2^{n-1} = 2^n 1$
 - $p(x_1)$ requires 1 parameter
 - $p(x_2 \mid x_1 = 0)$ requires 1 parameter, $p(x_2 \mid x_1 = 1)$ requires 1 parameter Total 2 parameters.
 - • •
- $2^n 1$ is still exponential, chain rule does not buy us anything.
- Now suppose $X_{i+1} \perp X_1, \ldots, X_{i-1} \mid X_i$, then

$$p(x_1, ..., x_n) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_1, x_2) \cdots p(x_n \mid x_1, x_{n-1})$$

= $p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_2) \cdots p(x_n \mid x_{n-1})$

• How many parameters? 2n-1. Exponential reduction!

- By factorizing joint distributions with independency assumption,
 - We assume a structure for the problem domain
 - We regularize the problem
 - We simplify the hypothesis (distributions) space
- Probabilistic graphical models
 - ▶ A way to represent a factorized joint distribution over a system of random variables with independency assumptions
 - We will introduce them first
- Deep neural network
 - More complicated and descriptive tool for representation of a model family.

Next Session

- Probabilistic graphical models
 - Directed (Bayesian networks)
 - Undirected (Markov random fields)