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Recap

 We need a framework to interact with distributions for statistical generative models.

 Probabilistic generative models

 Deep generative models

 Autoregressive models

 Variational Autoencoders

 Generative adversarial networks

 Normalizing Flow

 Energy-based models

 Score-based models
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How to represent probability distributions?

• Probability density function (p.d.f.) or probability
mass function (p.m.f.)

• Autoregressive models

• Flow models
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How to represent probability distributions?

• Probability density function (p.d.f.) or probability
mass function (p.m.f.)

• Pros
• Maximum likelihood training

• Principled model comparison via likelihoods

• Cons
• Special architectures or surrogate losses to deal with intractable

partition functions



How to represent probability distributions?

• Sampling process

• Generative adversarial networks (GANs)

GAN



How to represent probability distributions?

• Sampling process

• Pros
• Samples typically have better quality

• Cons
• Require adversarial training. Training instability and mode

collapse.

• No principled way to compare different models

• No principled termination criteria for training



How to represent probability distributions?

• When the pdf is differentiable, we can compute the
gradient of a probability density.

Score function

(pdf and score) (Electrical potentials and fields)



How to represent probability distributions?

• When the pdf is differentiable, we can compute the
gradient of a probability density.

Score function



Recap on energy-based models

• Deep Energy-Based models (EBMs)

• Maximum likelihood training:
• Contrastive divergence

• Requires iterative sampling during training



Recap on energy-based models

• Deep Energy-Based models (EBMs)

• Minimizing Fisher divergence:

• Score matching



Score matching for training EBMs

• Score function of EBMs

• Score matching for EBMs:

• Is score matching limited to EBMs?
• Autoregressive models

• Normalizing flow models



Score-based models

• What’s the most general model that can be efficiently
trained by score matching?

• Score-based model

flowMAFsAuto-

regressive

EBMs

?

Directly model 

the vector field 

of gradients!



Score estimation by training score-based models

Probability density i.i.d. samples Score function



Score estimation by training score-based models

• Given: i.i.d. samples

• Task: Estimating the score

• Score Model: A learnable vector-valued function

• Goal:

• How to compare two vector fields of scores?

Average 

Euclidean distance 

over the space



Score estimation by training score-based models

• Objective: Average Euclidean distance over the whole
space.

• Score matching:

• Requirements:
• The score model must be efficient to evaluate.

• Do we need the score model to be a proper score function (i.e.,
gradient of a scalar “energy” function)?

(Fisher divergence)



Score matching is not scalable

• Deep neural networks as more expressive score
models

• Compute and
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Backprops!

Score Matching 

is not Scalable!



Denoising Score Matching (Vincent, 2011)

• Consider the perturbed distribution

• Score estimation for is easier

• If the noise level is small, this is a good approximation



•Denoising score matching (Vincent 2011): 
matching the score of a noise-perturbed 

distribution

Denoising score matching



Denoising score matching



Denoising score matching



Denoising score matching

• Estimate the score of a noise-perturbed distribution

• is easy to compute
•

•

• Pros: efficient to optimize even for very high
dimensional data, and useful for optimal denoising.

• Con: cannot estimate the score of clean data (noise-
free)



Denoising score matching

• Sample a minibatch of datapoints

• Sample a minibatch of perturbed datapoints

• Estimate the denoising score matching loss with empirical
means

• If Gaussian perturbation

• Stochastic gradient descent

• Need to choose a very small 𝜎!



Denoising Score Matching (Vincent, 2011)

• Consider the perturbed distribution

• Score estimation for is easier

x 

tries to estimate the noise that was 
added to produce 

= x + noise

Denoising

Score matching



Sliced score matching

• One dimensional problems should be easier.

• Consider projections onto random directions.

≈ ≈ ≈

Song*, Garg*, Shi, Ermon. "Sliced Score Matching: A Scalable 

Approach to Density and Score Estimation." UAI 2019.



Sliced score matching

• Objective: Sliced Fisher Divergence

• Integration by parts

fast?Sliced Score Matching



Computing Jacobian-vector products is scalable

One Backprop!
Sliced Score Matching 

is scalable
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Slightly slower than 

denoising score matching



Sliced score matching

• Sample a minibatch of datapoints
• Sample a minibatch of projection directions
• Estimate the sliced score matching loss with empirical

means

• The projection distribution is typically Gaussian or
Rademacher

• Stochastic gradient descent
• Can use more projections per datapoint to boost

performance



Score-based generative modeling

Score 

Matching ?

Scores New samplesData samples



From scores to samples: Langevin MCMC

Scores Follow the scores Follow noisy scores:

Langevin MCMC



Langevin dynamics sampling

Sample from using only the score

• Initialize

• Repeat for

• If 𝜖 → 0 and 𝑇 → ∞, we are guaranteed to have

• Langevin dynamics + score estimation



Score-based generative modeling

score 
matching

Scores New samplesData samples

Langevin 
dynamics



Score-based generative modeling: results

Final samples



Score-based generative modeling: results

Langevin sampling process



Pitfall 1: manifold hypothesis

• Manifold hypothesis.

• Data score is undefined.

Data points



Pitfall 1: manifold hypothesis

• Fitting the data with a low-dimensional linear
manifold (PCA)

• Score estimation on CIFAR-10.

784

595
Dim

3072

2165
Dim



Challenge in low data density regions

Inaccurate Inaccurate

Song and Ermon. “Generative Modeling by Estimating Gradients 

of the Data Distribution.” NeurIPS 2019.

Langevin MCMC will have trouble 

exploring low density regions



Pitfall 3: slow mixing of Langevin dynamics between data 
modes

• Suppose the data distribution has two modes with disjoint
supports:

• Data score function:

• The score function has no dependence on the mode
weighting 𝜋 at all!

• Langevin sampling will not reflect 𝜋



Pitfall 3: slow mixing of Langevin dynamics between 
data modes



After fixing these pitfalls

Song, Yang, and Stefano Ermon. "Generative Modeling 

by Estimating Gradients of the Data Distribution.” 

NeurIPS 2019.



Gaussian perturbation

• The solution to all pitfalls: Gaussian perturbation!

• Manifold + noise

• Score matching on noisy data.

CIFAR-10 Noisy CIFAR-10



Challenge in low data density regions

Inaccurate Inaccurate

Song and Ermon. “Generative Modeling by Estimating Gradients 

of the Data Distribution.” NeurIPS 2019.



Improving score estimation by adding noise

Accurate Accurate
High noise provides useful directional 

information for Langevin dynamics.

But perturbed density no longer 

approximates the true data density.



Multi-scale Noise Perturbation

• How much noise to add?

• Multi-scale noise perturbations.

…



Trading off Data Quality and Estimation Accuracy

Worse data quality! Better score estimation!

(Red encodes error) 



Annealed Langevin Dynamics: Joint Scores to Samples

• Sample using sequentially with
Langevin dynamics.

• Anneal down the noise level.

• Samples used as initialization for the next level.



Comparison to the vanilla Langevin dynamics

Langevin dynamics Annealed Langevin dynamics



Joint Score Estimation via 
Noise Conditional Score Networks

Noise Conditional 

Score Network

(NCSN)



Training noise conditional score networks

• Which score matching loss?
• Sliced score matching?

• Denoising score matching?

• Denoising score matching is naturally suitable, since
the goal is to estimate the score of perturbed data
distributions.

• Weighted combination of denoising score matching
losses



Choosing noise scales

• Key intuition: adjacent
noise scales should have
sufficient overlap to
facilitate transitioning
across noise scales in
annealed Langevin
dynamics.

• A geometric progression
with sufficient length.



Choosing the weighting function

• Weighted combination of denoising score matching
losses

• How to choose the weighting function:                              

• Goal: balancing different score matching losses in the
sum→



Training noise conditional score networks

• Sample a mini-batch of datapoints

• Sample a mini-batch of noise scale indices

• Sample a mini-batch of Gaussian noise

• Estimate the weighted mixture of score matching losses

• Stochastic gradient descent

• As efficient as training one single non-conditional score-
based model



Using multiple noise levels

Data

Annealed Langevin dynamics

Score matching loss

Positive weighting 

function

Noise Conditional 

Score Model 



Experiments: Sampling



Infinite noise levels



Perturbing data with stochastic processes

Stochastic process

Probability densities

Infinitesimal noiseDeterministic drift

Stochastic differential equation (SDE)

WLOG: Toy SDE

57



Generation via reverse stochastic processes

Forward SDE (t: 0→T)

Reverse SDE (t: T→0)

Infinitesimal noise in 

the reverse time 

direction

Score function!
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Score-based generative modeling via SDEs

• Time-dependent score-based model

• Training:

• Reverse-time SDE

• Euler-Maruyama (analgous to Euler for ODEs)

Song, Sohl-Dickstein, Kingma, Kumar, Ermon, Poole. “Score-Based Generative Modeling 

through Stochastic Differential Equations.” ICLR 2021.



Predictor-Corrector sampling methods

• Predictor-Corrector sampling.
• Predictor: Numerical SDE solver

• Corrector: Score-based MCMC

corrector


