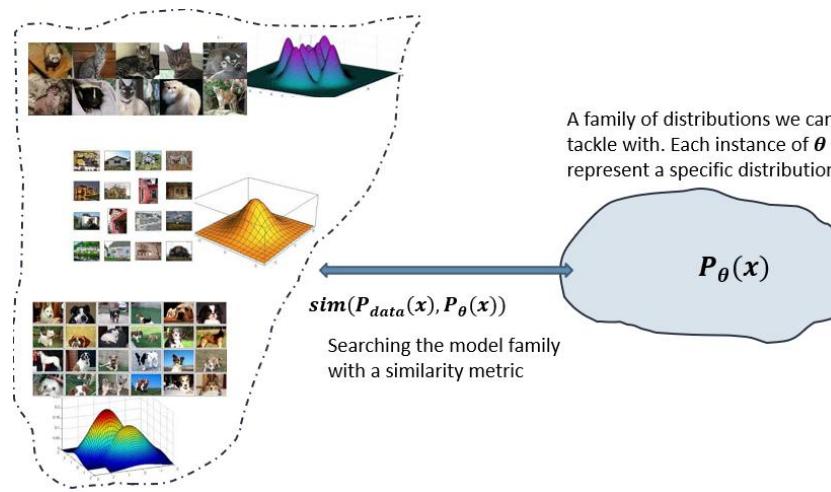


Score-based Models

22-808: Generative models
Sharif University of Technology
Fall 2025

Fatemeh Seyyedsalehi

Recap



- ▶ We need a framework to interact with distributions for statistical generative models.
 - ▶ Probabilistic generative models
 - ▶ Deep generative models
 - ▶ Autoregressive models
 - ▶ Variational Autoencoders
 - ▶ Generative adversarial networks
 - ▶ Normalizing Flow
 - ▶ Energy-based models
 - ▶ **Score-based models**

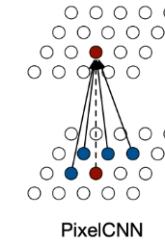
How to represent probability distributions?

- Probability density function (p.d.f.) or probability mass function (p.m.f.)

$$p(\mathbf{x})$$

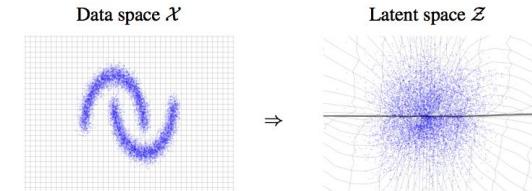
- Autoregressive models

$$p_{\theta}(\mathbf{x}) = \prod_{i=1}^d p_{\theta}(\mathbf{x}_i \mid \mathbf{x}_{<i})$$



- Flow models

$$p_{\theta}(\mathbf{x}) = p(\mathbf{z}) \left| \det(J_{f_{\theta}}(\mathbf{x})) \right|, \quad \mathbf{z} = f_{\theta}(\mathbf{x})$$



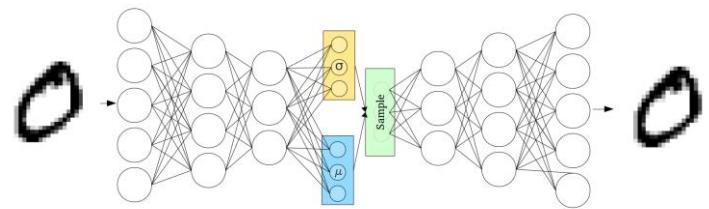
How to represent probability distributions?

- Probability density function (p.d.f.) or probability mass function (p.m.f.)

$$p(\mathbf{x})$$

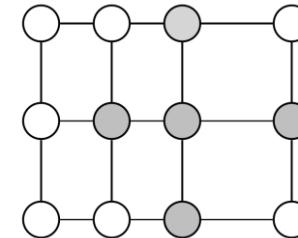
- Variational autoencoders

$$p_{\theta}(\mathbf{x}) = \int p(\mathbf{z})p_{\theta}(\mathbf{x} \mid \mathbf{z}) \, d\mathbf{z}$$



- Energy-based models

$$p_{\theta}(\mathbf{x}) = \frac{e^{f_{\theta}(\mathbf{x})}}{Z(\theta)}$$



How to represent probability distributions?

- Probability density function (p.d.f.) or probability mass function (p.m.f.)

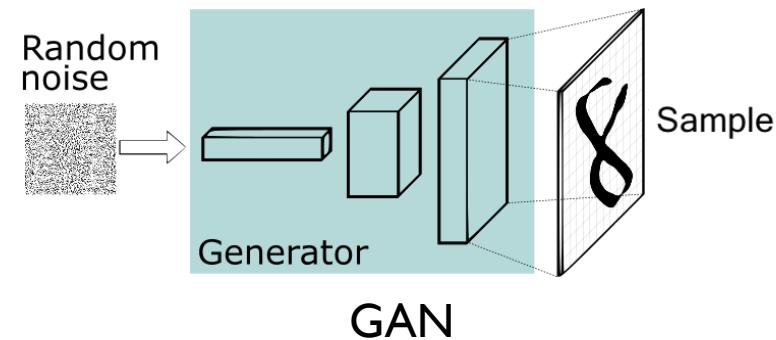
$$p(\mathbf{x})$$

- Pros
 - Maximum likelihood training
 - Principled model comparison via likelihoods
- Cons
 - Special architectures or surrogate losses to deal with intractable partition functions

How to represent probability distributions?

- Sampling process
- Generative adversarial networks (GANs)

$$\mathbf{z} \sim p(\mathbf{z})$$
$$\mathbf{x} = g_{\theta}(\mathbf{z})$$



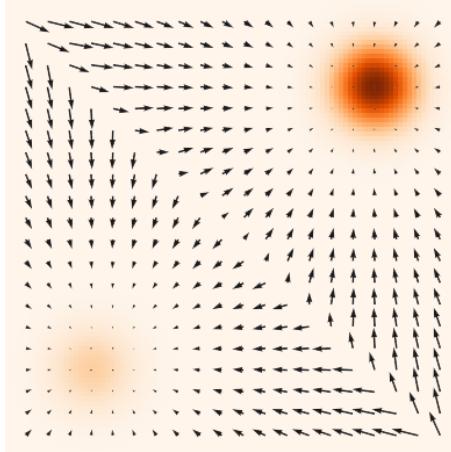
How to represent probability distributions?

- Sampling process
- Pros
 - Samples typically have better quality
- Cons
 - Require adversarial training. Training instability and mode collapse.
 - No principled way to compare different models
 - No principled termination criteria for training

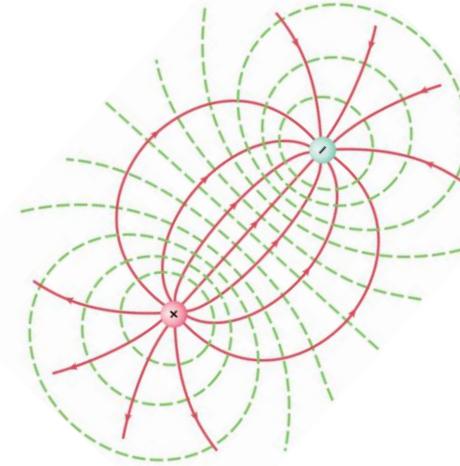
How to represent probability distributions?

- When the pdf is differentiable, we can compute the gradient of a probability density.

Score function $\nabla_{\mathbf{x}} \log p(\mathbf{x})$



(pdf and score)

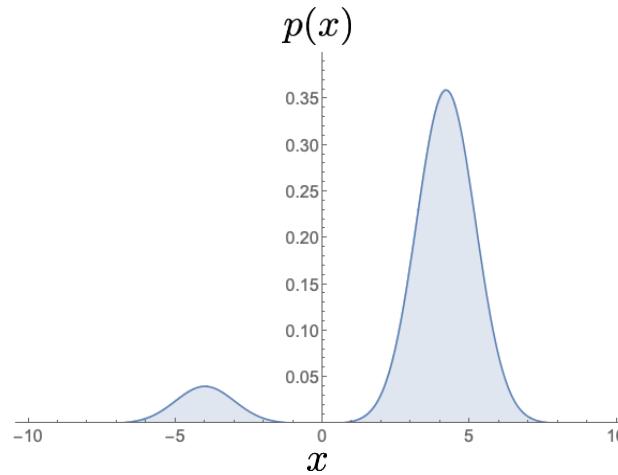
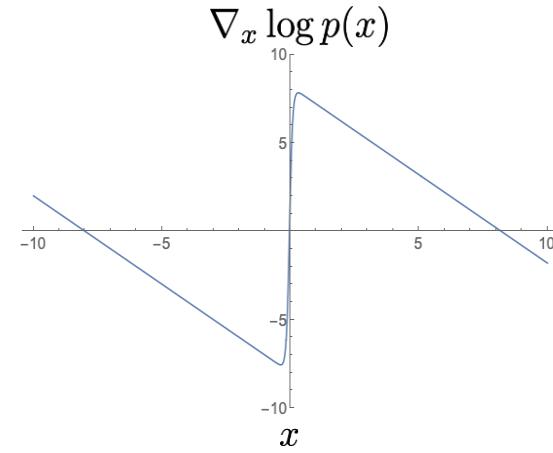


(Electrical potentials and fields)

How to represent probability distributions?

- When the pdf is differentiable, we can compute the gradient of a probability density.

Score function $\nabla_{\mathbf{x}} \log p(\mathbf{x})$

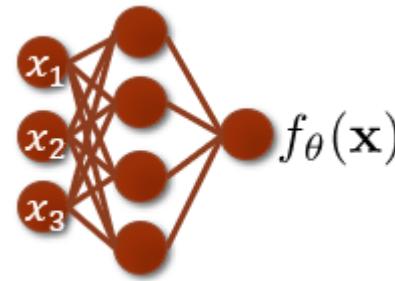


Recap on energy-based models

- Deep Energy-Based models (EBMs)

$$f_{\theta}(\mathbf{x}) \in \mathbb{R}$$

$$p_{\theta}(\mathbf{x}) = \frac{e^{f_{\theta}(\mathbf{x})}}{Z(\theta)}$$



- Maximum likelihood training: $\max_{\theta} f_{\theta}(\mathbf{x}_{\text{train}}) - \log Z(\theta)$
 - Contrastive divergence

$$\nabla_{\theta} f_{\theta}(\mathbf{x}_{\text{train}}) - \nabla_{\theta} \log Z(\theta) \approx \nabla_{\theta} f_{\theta}(\mathbf{x}_{\text{train}}) - \nabla_{\theta} f_{\theta}(\mathbf{x}_{\text{sample}})$$

- Requires iterative sampling during training

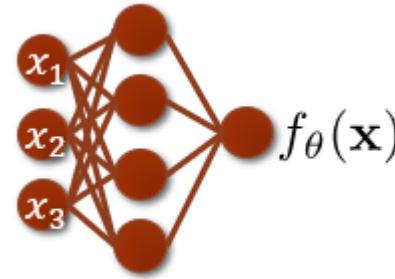
$$\mathbf{x}_{\text{sample}} \sim p_{\theta}(\mathbf{x})$$

Recap on energy-based models

- Deep Energy-Based models (EBMs)

$$f_{\theta}(\mathbf{x}) \in \mathbb{R}$$

$$p_{\theta}(\mathbf{x}) = \frac{e^{f_{\theta}(\mathbf{x})}}{Z(\theta)}$$



- Minimizing Fisher divergence:

$$\min_{\theta} \frac{1}{2} E_{\mathbf{x} \sim p_{\text{data}}} [\|\nabla_{\mathbf{x}} \log p_{\text{data}}(\mathbf{x}) - \nabla_{\mathbf{x}} \log p_{\theta}(\mathbf{x})\|_2^2]$$

- Score matching

$$\frac{1}{2} E_{\mathbf{x} \sim p_{\text{data}}} [\|\nabla_{\mathbf{x}} \log p_{\text{data}}(\mathbf{x}) - \nabla_{\mathbf{x}} \log p_{\theta}(\mathbf{x})\|_2^2]$$

$$= \frac{1}{2} E_{\mathbf{x} \sim p_{\text{data}}} \left[\frac{1}{2} \|\nabla_{\mathbf{x}} \log p_{\theta}(\mathbf{x})\|_2^2 + \text{tr}(\nabla_{\mathbf{x}}^2 \log p_{\theta}(\mathbf{x})) \right] + \text{const.}$$

Score matching for training EBMs

- Score function of EBMs

$$\nabla_{\mathbf{x}} \log p_{\theta}(\mathbf{x}) = \nabla_{\mathbf{x}} f_{\theta}(\mathbf{x}) - \underbrace{\nabla_{\mathbf{x}} \log Z(\theta)}_{=0} = \nabla_{\mathbf{x}} f_{\theta}(\mathbf{x})$$

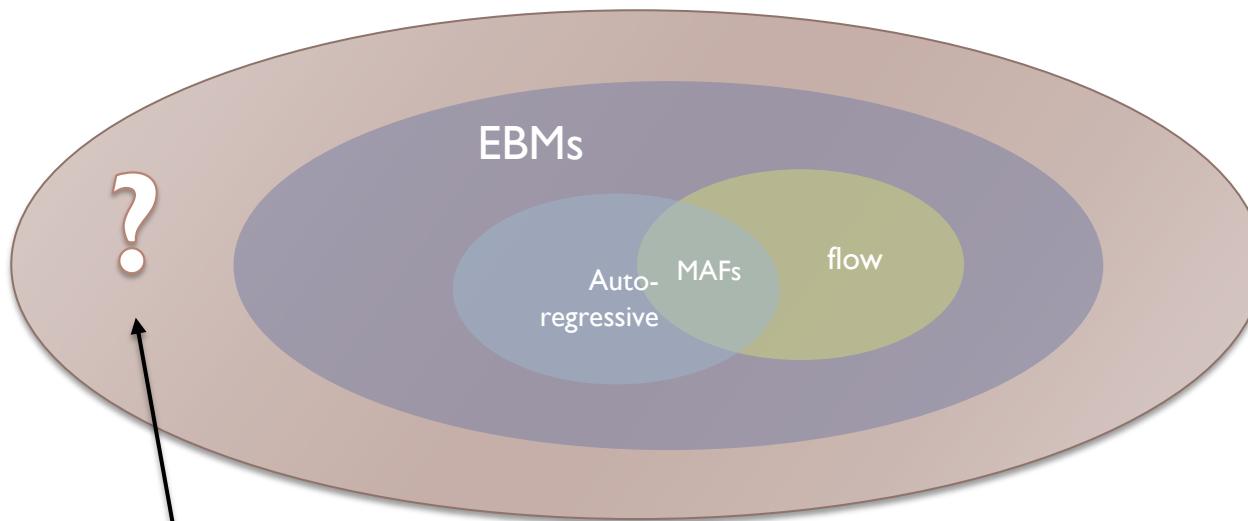
- Score matching for EBMs:

$$\begin{aligned} & E_{\mathbf{x} \sim p_{\text{data}}} \left[\frac{1}{2} \|\nabla_{\mathbf{x}} \log p_{\theta}(\mathbf{x})\|_2^2 + \text{tr}(\nabla_{\mathbf{x}}^2 \log p_{\theta}(\mathbf{x})) \right] \\ &= E_{\mathbf{x} \sim p_{\text{data}}} \left[\frac{1}{2} \|\nabla_{\mathbf{x}} f_{\theta}(\mathbf{x})\|_2^2 + \text{tr}(\nabla_{\mathbf{x}}^2 f_{\theta}(\mathbf{x})) \right] \end{aligned}$$

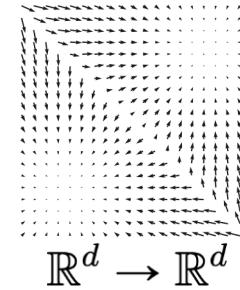
- Is score matching limited to EBMs?
 - Autoregressive models
 - Normalizing flow models

Score-based models

- What's the most general model that can be efficiently trained by score matching?



$$s_\theta(\mathbf{x})$$

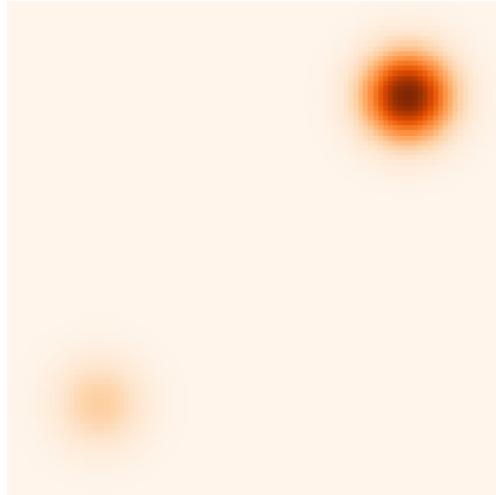


Directly model
the vector field
of gradients!

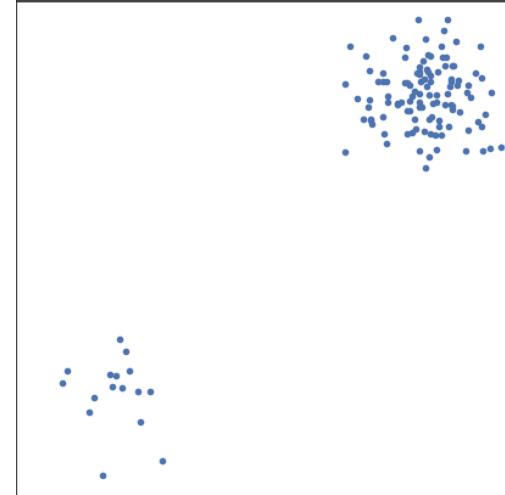
- Score-based model

Score estimation by training score-based models

Probability density
 $p_{\text{data}}(\mathbf{x})$

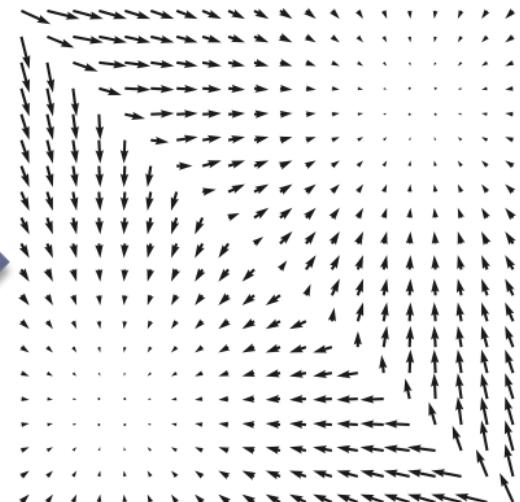


i.i.d. samples
 $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$



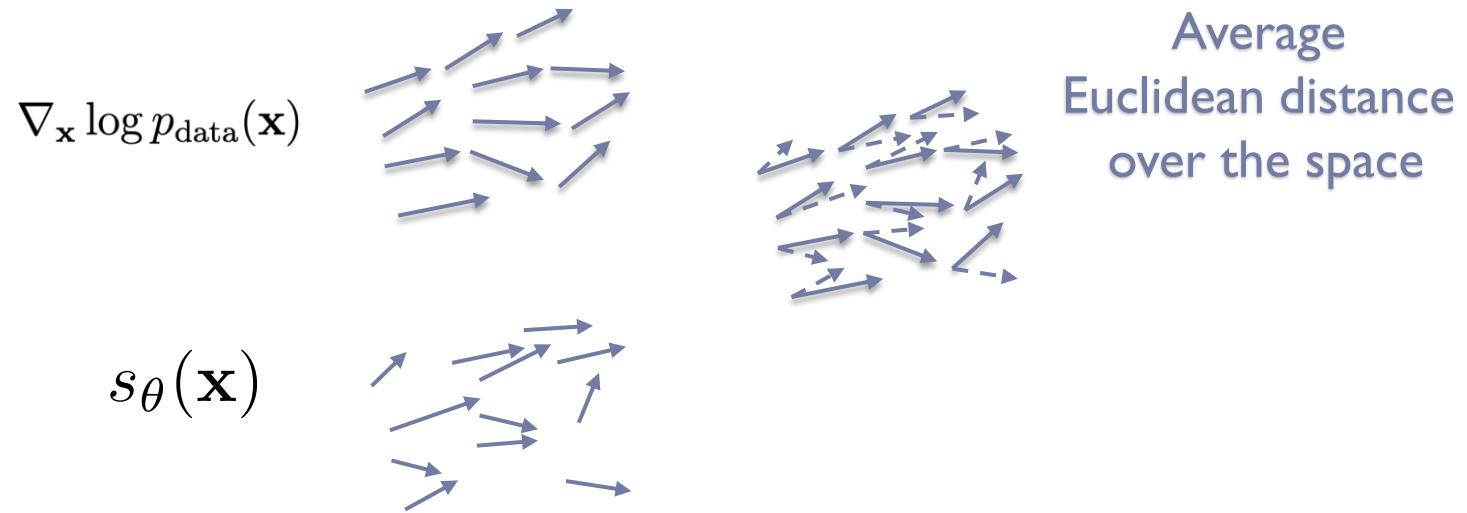
Score function

$$s_{\theta}(\mathbf{x}) \approx \nabla_{\mathbf{x}} \log p_{\text{data}}(\mathbf{x})$$



Score estimation by training score-based models

- **Given:** i.i.d. samples $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\} \sim p_{\text{data}}(\mathbf{x})$
- **Task:** Estimating the score $\nabla_{\mathbf{x}} \log p_{\text{data}}(\mathbf{x})$
- **Score Model:** A learnable vector-valued function
- **Goal:** $s_{\theta}(\mathbf{x}) \approx \nabla_{\mathbf{x}} \log p_{\text{data}}(\mathbf{x}) \quad s_{\theta}(\mathbf{x}) : \mathbb{R}^d \rightarrow \mathbb{R}^d$
- How to compare two vector fields of scores?



Score estimation by training score-based models

- **Objective:** Average Euclidean distance over the whole space.

$$\frac{1}{2} E_{\mathbf{x} \sim p_{\text{data}}} [\|\nabla_{\mathbf{x}} \log p_{\text{data}}(\mathbf{x}) - \mathbf{s}_{\theta}(\mathbf{x})\|_2^2]$$

(Fisher divergence)

- **Score matching:**

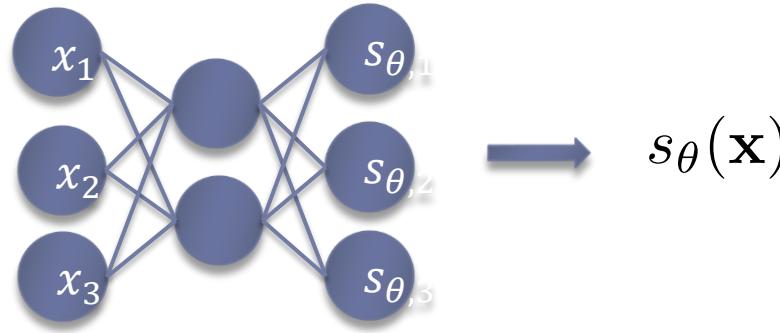
$$E_{\mathbf{x} \sim p_{\text{data}}} \left[\frac{1}{2} \|\mathbf{s}_{\theta}(\mathbf{x})\|_2^2 + \text{tr} \left(\underbrace{\nabla_{\mathbf{x}} \mathbf{s}_{\theta}(\mathbf{x})}_{\text{Jacobian of } \mathbf{s}_{\theta}(\mathbf{x})} \right) \right]$$

- **Requirements:**

- The score model must be efficient to evaluate.
- Do we need the score model to be a proper score function (i.e., gradient of a scalar “energy” function)?

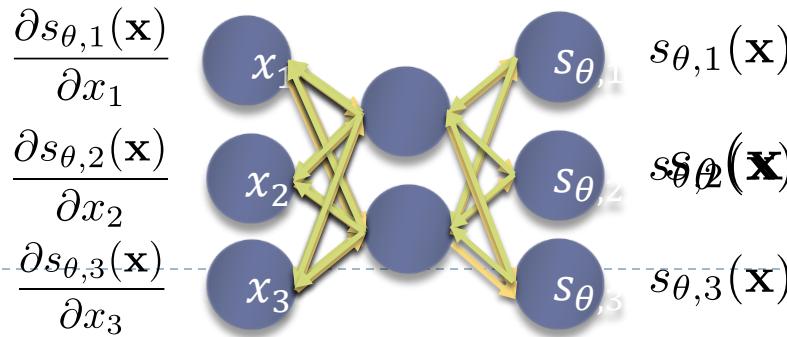
Score matching is not scalable

- Deep neural networks as more expressive score models



Score Matching
is not Scalable!

- Compute $\|s_{\theta}(\mathbf{x})\|_2^2$ and $\text{tr}(\nabla_{\mathbf{x}} s_{\theta}(\mathbf{x}))$



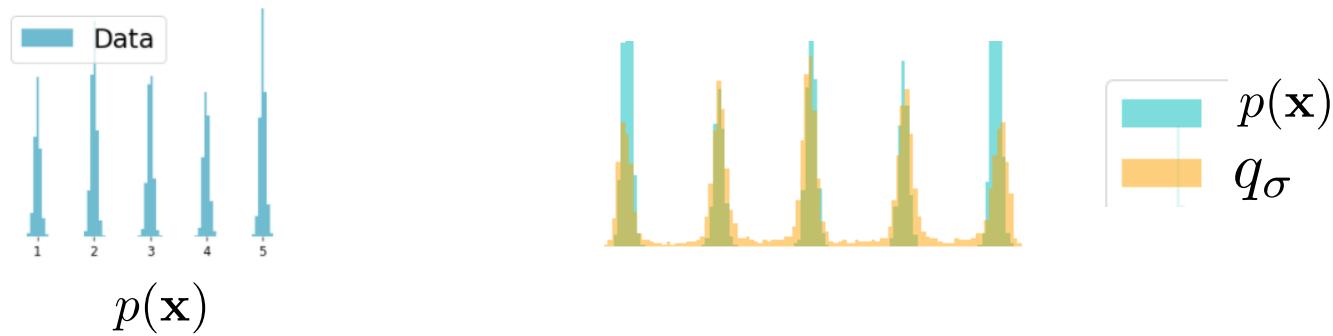
$O(d)$ Backprops!

$$\nabla_{\mathbf{x}} s_{\theta}(\mathbf{x}) = \begin{pmatrix} \frac{\partial s_{\theta,1}(\mathbf{x})}{\partial x_1} & \frac{\partial s_{\theta,1}(\mathbf{x})}{\partial x_2} & \frac{\partial s_{\theta,1}(\mathbf{x})}{\partial x_3} \\ \frac{\partial s_{\theta,2}(\mathbf{x})}{\partial x_1} & \frac{\partial s_{\theta,2}(\mathbf{x})}{\partial x_2} & \frac{\partial s_{\theta,2}(\mathbf{x})}{\partial x_3} \\ \frac{\partial s_{\theta,3}(\mathbf{x})}{\partial x_1} & \frac{\partial s_{\theta,3}(\mathbf{x})}{\partial x_2} & \frac{\partial s_{\theta,3}(\mathbf{x})}{\partial x_3} \end{pmatrix}$$

Denoising Score Matching (Vincent, 2011)

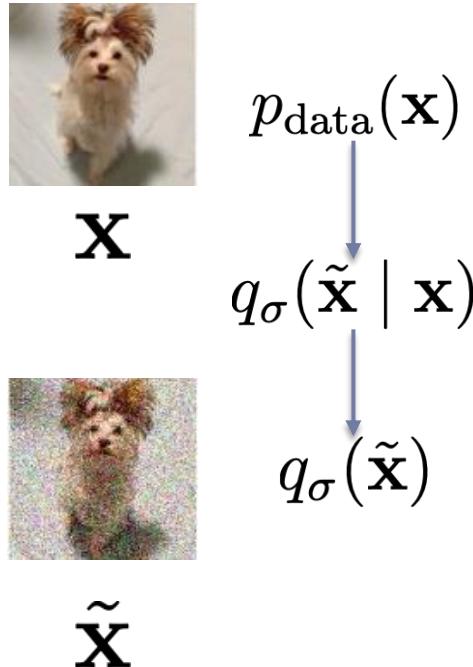
- Consider the perturbed distribution

$$q_\sigma(\tilde{\mathbf{x}} \mid \mathbf{x}) = \mathcal{N}(\mathbf{x}; \sigma^2 I) \quad q_\sigma(\tilde{\mathbf{x}}) = \int p(\mathbf{x}) q_\sigma(\tilde{\mathbf{x}} \mid \mathbf{x}) d\mathbf{x}$$



- Score estimation for $\nabla_{\tilde{\mathbf{x}}} \log q_\sigma(\tilde{\mathbf{x}})$ is easier $q_\sigma(\tilde{\mathbf{x}}) \approx p(\tilde{\mathbf{x}})$
- If the noise level is small, this is a good approximation

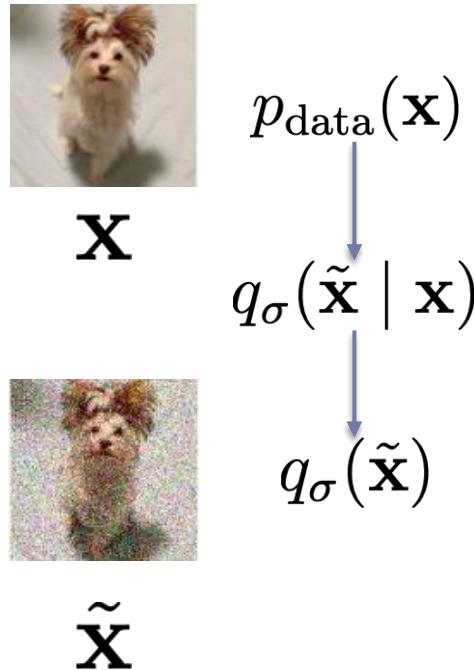
Denoising score matching



Denoising score matching (Vincent 2011):
• matching the score of a noise-perturbed distribution

$$\begin{aligned} & \frac{1}{2} E_{\tilde{\mathbf{x}} \sim q_\sigma} [\|\nabla_{\tilde{\mathbf{x}}} \log q_\sigma(\tilde{\mathbf{x}}) - \mathbf{s}_\theta(\tilde{\mathbf{x}})\|_2^2] \\ &= \frac{1}{2} \int q_\sigma(\tilde{\mathbf{x}}) \|\nabla_{\tilde{\mathbf{x}}} \log q_\sigma(\tilde{\mathbf{x}}) - \mathbf{s}_\theta(\tilde{\mathbf{x}})\|_2^2 d\tilde{\mathbf{x}} \\ &= \frac{1}{2} \int q_\sigma(\tilde{\mathbf{x}}) \|\nabla_{\tilde{\mathbf{x}}} \log q_\sigma(\tilde{\mathbf{x}})\|_2^2 d\tilde{\mathbf{x}} + \frac{1}{2} \int q_\sigma(\tilde{\mathbf{x}}) \|\mathbf{s}_\theta(\tilde{\mathbf{x}})\|_2^2 d\tilde{\mathbf{x}} \\ &\quad - \int q_\sigma(\tilde{\mathbf{x}}) \nabla_{\tilde{\mathbf{x}}} \log q_\sigma(\tilde{\mathbf{x}})^\top \mathbf{s}_\theta(\tilde{\mathbf{x}}) d\tilde{\mathbf{x}} \\ &= \text{const.} + \frac{1}{2} E_{\tilde{\mathbf{x}} \sim q_\sigma} [\|\mathbf{s}_\theta(\tilde{\mathbf{x}})\|_2^2] - \int q_\sigma(\tilde{\mathbf{x}}) \nabla_{\tilde{\mathbf{x}}} \log q_\sigma(\tilde{\mathbf{x}})^\top \mathbf{s}_\theta(\tilde{\mathbf{x}}) d\tilde{\mathbf{x}} \end{aligned}$$

Denoising score matching



$$\begin{aligned} & - \int q_{\sigma}(\tilde{\mathbf{x}}) \nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}})^T \mathbf{s}_{\theta}(\tilde{\mathbf{x}}) d\tilde{\mathbf{x}} \\ &= - \int q_{\sigma}(\tilde{\mathbf{x}}) \frac{1}{q_{\sigma}(\tilde{\mathbf{x}})} \nabla_{\tilde{\mathbf{x}}} q_{\sigma}(\tilde{\mathbf{x}})^T \mathbf{s}_{\theta}(\tilde{\mathbf{x}}) d\tilde{\mathbf{x}} \\ &= - \int \nabla_{\tilde{\mathbf{x}}} q_{\sigma}(\tilde{\mathbf{x}})^T \mathbf{s}_{\theta}(\tilde{\mathbf{x}}) d\tilde{\mathbf{x}} \\ &= - \int \nabla_{\tilde{\mathbf{x}}} \left(\int p_{\text{data}}(\mathbf{x}) q_{\sigma}(\tilde{\mathbf{x}} \mid \mathbf{x}) d\mathbf{x} \right)^T \mathbf{s}_{\theta}(\tilde{\mathbf{x}}) d\tilde{\mathbf{x}} \\ &= - \int \left(\int p_{\text{data}}(\mathbf{x}) \nabla_{\tilde{\mathbf{x}}} q_{\sigma}(\tilde{\mathbf{x}} \mid \mathbf{x}) d\mathbf{x} \right)^T \mathbf{s}_{\theta}(\tilde{\mathbf{x}}) d\tilde{\mathbf{x}} \\ &= - \int \left(\int p_{\text{data}}(\mathbf{x}) q_{\sigma}(\tilde{\mathbf{x}} \mid \mathbf{x}) \nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}} \mid \mathbf{x}) d\mathbf{x} \right)^T \mathbf{s}_{\theta}(\tilde{\mathbf{x}}) d\tilde{\mathbf{x}} \\ &= - \iint p_{\text{data}}(\mathbf{x}) q_{\sigma}(\tilde{\mathbf{x}} \mid \mathbf{x}) \nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}} \mid \mathbf{x})^T \mathbf{s}_{\theta}(\tilde{\mathbf{x}}) d\mathbf{x} d\tilde{\mathbf{x}} \\ &= - E_{\mathbf{x} \sim p_{\text{data}}(\mathbf{x}), \tilde{\mathbf{x}} \sim q_{\sigma}(\tilde{\mathbf{x}} \mid \mathbf{x})} [\nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}} \mid \mathbf{x})^T \mathbf{s}_{\theta}(\tilde{\mathbf{x}})] \end{aligned}$$

Denoising score matching

\mathbf{x}

$\tilde{\mathbf{x}}$

$$p_{\text{data}}(\mathbf{x})$$

$$\frac{1}{2} E_{\tilde{\mathbf{x}} \sim q_\sigma} [\|\nabla_{\tilde{\mathbf{x}}} \log q_\sigma(\tilde{\mathbf{x}}) - \mathbf{s}_\theta(\tilde{\mathbf{x}})\|_2^2]$$

$$= \text{const.} + \frac{1}{2} E_{\tilde{\mathbf{x}} \sim q_\sigma} [\|\mathbf{s}_\theta(\tilde{\mathbf{x}})\|_2^2] - \int q_\sigma(\tilde{\mathbf{x}}) \nabla_{\tilde{\mathbf{x}}} \log q_\sigma(\tilde{\mathbf{x}})^\top \mathbf{s}_\theta(\tilde{\mathbf{x}}) d\tilde{\mathbf{x}}$$

$$q_\sigma(\tilde{\mathbf{x}} \mid \mathbf{x}) = \text{const.} + \frac{1}{2} E_{\tilde{\mathbf{x}} \sim q_\sigma} [\|\mathbf{s}_\theta(\tilde{\mathbf{x}})\|_2^2] - E_{\mathbf{x} \sim p_{\text{data}}(\mathbf{x}), \tilde{\mathbf{x}} \sim q_\sigma(\tilde{\mathbf{x}} \mid \mathbf{x})} [\nabla_{\tilde{\mathbf{x}}} \log q_\sigma(\tilde{\mathbf{x}} \mid \mathbf{x})^\top \mathbf{s}_\theta(\tilde{\mathbf{x}})]$$

$$= \text{const.} + \frac{1}{2} E_{\mathbf{x} \sim p_{\text{data}}(\mathbf{x}), \tilde{\mathbf{x}} \sim q_\sigma(\tilde{\mathbf{x}} \mid \mathbf{x})} [\|\mathbf{s}_\theta(\tilde{\mathbf{x}}) - \nabla_{\tilde{\mathbf{x}}} \log q_\sigma(\tilde{\mathbf{x}} \mid \mathbf{x})\|_2^2]$$

$$- \frac{1}{2} E_{\mathbf{x} \sim p_{\text{data}}(\mathbf{x}), \tilde{\mathbf{x}} \sim q_\sigma(\tilde{\mathbf{x}} \mid \mathbf{x})} [\|\nabla_{\tilde{\mathbf{x}}} \log q_\sigma(\tilde{\mathbf{x}} \mid \mathbf{x})\|_2^2]$$

$$= \text{const.} + \frac{1}{2} E_{\mathbf{x} \sim p_{\text{data}}(\mathbf{x}), \tilde{\mathbf{x}} \sim q_\sigma(\tilde{\mathbf{x}} \mid \mathbf{x})} [\|\mathbf{s}_\theta(\tilde{\mathbf{x}}) - \nabla_{\tilde{\mathbf{x}}} \log q_\sigma(\tilde{\mathbf{x}} \mid \mathbf{x})\|_2^2] + \text{const.}$$

$$q_\sigma(\tilde{\mathbf{x}}) = \frac{1}{2} E_{\mathbf{x} \sim p_{\text{data}}(\mathbf{x}), \tilde{\mathbf{x}} \sim q_\sigma(\tilde{\mathbf{x}} \mid \mathbf{x})} [\|\mathbf{s}_\theta(\tilde{\mathbf{x}}) - \nabla_{\tilde{\mathbf{x}}} \log q_\sigma(\tilde{\mathbf{x}} \mid \mathbf{x})\|_2^2] + \text{const.}$$

Denoising score matching

- Estimate the score of a noise-perturbed distribution

$$\begin{aligned} & \frac{1}{2} E_{\tilde{\mathbf{x}} \sim p_{\text{data}}} [\|\mathbf{s}_\theta(\tilde{\mathbf{x}}) - \nabla_{\tilde{\mathbf{x}}} \log q_\sigma(\tilde{\mathbf{x}})\|_2^2] \\ &= \frac{1}{2} E_{\mathbf{x} \sim p_{\text{data}}(\mathbf{x}), \tilde{\mathbf{x}} \sim q_\sigma(\tilde{\mathbf{x}} | \mathbf{x})} [\|\mathbf{s}_\theta(\tilde{\mathbf{x}}) - \nabla_{\tilde{\mathbf{x}}} \log q_\sigma(\tilde{\mathbf{x}} | \mathbf{x})\|_2^2] + \text{const.} \end{aligned}$$

- $\nabla_{\tilde{\mathbf{x}}} \log q_\sigma(\tilde{\mathbf{x}} | \mathbf{x})$ is easy to compute
 - $q_\sigma(\tilde{\mathbf{x}} | \mathbf{x}) = \mathcal{N}(\tilde{\mathbf{x}} | \mathbf{x}, \sigma^2 \mathbf{I})$
 - $\nabla_{\tilde{\mathbf{x}}} \log q_\sigma(\tilde{\mathbf{x}} | \mathbf{x}) = -\frac{\tilde{\mathbf{x}} - \mathbf{x}}{\sigma^2}$
- **Pros:** efficient to optimize even for very high dimensional data, and useful for optimal denoising.
- **Con:** cannot estimate the score of clean data (noise-free)

Denoising score matching

- Sample a minibatch of datapoints $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\} \sim p_{\text{data}}(\mathbf{x})$
- Sample a minibatch of perturbed datapoints

$$\{\tilde{\mathbf{x}}_1, \tilde{\mathbf{x}}_2, \dots, \tilde{\mathbf{x}}_n\} \sim q_\sigma(\tilde{\mathbf{x}})$$

- Estimate the denoising score matching loss with empirical means

$$\tilde{\mathbf{x}}_i \sim q_\sigma(\tilde{\mathbf{x}}_i \mid \mathbf{x}_i)$$

$$\frac{1}{2n} \sum_{i=1}^n [\|\mathbf{s}_\theta(\tilde{\mathbf{x}}_i) - \nabla_{\tilde{\mathbf{x}}} \log q_\sigma(\tilde{\mathbf{x}}_i \mid \mathbf{x}_i)\|_2^2]$$

- If Gaussian perturbation

$$\frac{1}{2n} \sum_{i=1}^n \left[\left\| \mathbf{s}_\theta(\tilde{\mathbf{x}}_i) + \frac{\tilde{\mathbf{x}}_i - \mathbf{x}_i}{\sigma^2} \right\|_2^2 \right]$$

- Stochastic gradient descent
- Need to choose a very small σ !

Denoising Score Matching (Vincent, 2011)

- Consider the perturbed distribution

$$q_\sigma(\tilde{\mathbf{x}} \mid \mathbf{x}) = \mathcal{N}(\mathbf{x}; \sigma^2 I) \quad q_\sigma(\tilde{\mathbf{x}}) = \int p(\mathbf{x}) q_\sigma(\tilde{\mathbf{x}} \mid \mathbf{x}) d\mathbf{x}$$

- Score estimation for $\nabla_{\tilde{\mathbf{x}}} \log q_\sigma(\tilde{\mathbf{x}})$ is easier

Score matching $\frac{1}{2} \mathbb{E}_{q_\sigma(\tilde{\mathbf{x}})} [\|\nabla_{\tilde{\mathbf{x}}} \log q_\sigma(\tilde{\mathbf{x}}) - s_\theta(\tilde{\mathbf{x}})\|_2^2]$

Denoising $= \frac{1}{2} \mathbb{E}_{p(\mathbf{x})} \mathbb{E}_{q_\sigma(\tilde{\mathbf{x}} \mid \mathbf{x})} [\underbrace{\|\frac{1}{\sigma^2}(\mathbf{x} - \tilde{\mathbf{x}}) - s_\theta(\tilde{\mathbf{x}})\|_2^2}_{\text{---}} + \text{const.}]$

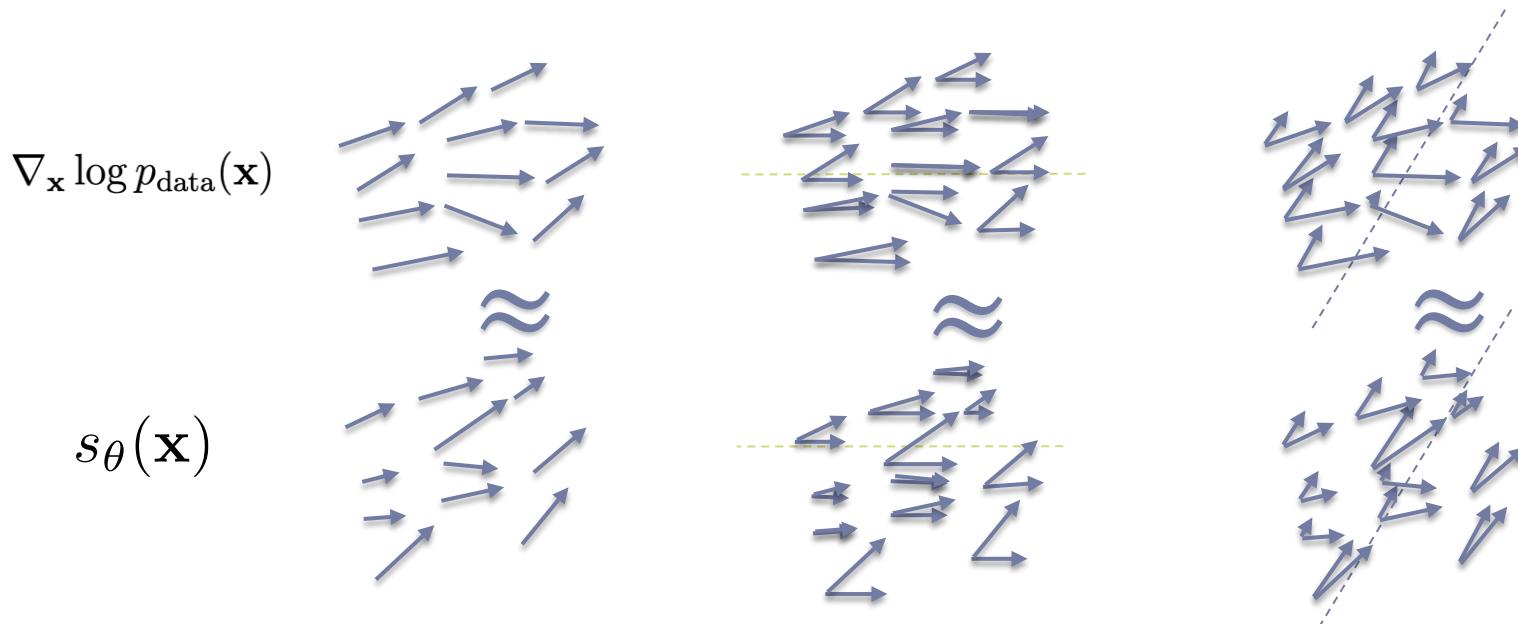
\mathbf{x}

$\tilde{\mathbf{x}} = \mathbf{x} + \text{noise}$

$s_\theta(\tilde{\mathbf{x}})$ tries to estimate the noise that was added to produce $\tilde{\mathbf{x}}$

Sliced score matching

- One dimensional problems should be easier.
- Consider projections onto random directions.



Song*, Garg*, Shi, Ermon. "Sliced Score Matching: A Scalable Approach to Density and Score Estimation." UAI 2019.

Sliced score matching

- **Objective:** Sliced Fisher Divergence

$$\frac{1}{2} E_{\mathbf{v} \sim p_{\mathbf{v}}} E_{\mathbf{x} \sim p_{\text{data}}} [(\mathbf{v}^T \nabla_{\mathbf{x}} \log p_{\text{data}}(\mathbf{x}) - \mathbf{v}^T \mathbf{s}_{\theta}(\mathbf{x}))^2]$$

- **Integration by parts**

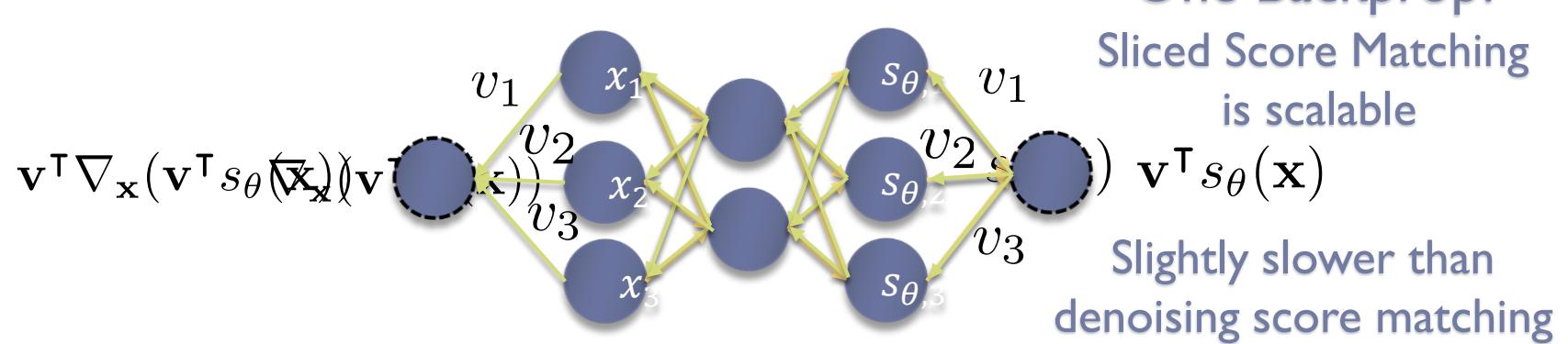
$$E_{\mathbf{v} \sim p_{\mathbf{v}}} E_{\mathbf{x} \sim p_{\text{data}}} \left[\mathbf{v}^T \nabla_{\mathbf{x}} \mathbf{s}_{\theta}(\mathbf{x}) \mathbf{v} + \frac{1}{2} (\mathbf{v}^T \mathbf{s}_{\theta}(\mathbf{x}))^2 \right]$$

$$(v_1 \quad v_2 \quad v_3) \begin{pmatrix} \frac{\partial s_{\theta,1}(\mathbf{x})}{\partial x_1} & \frac{\partial s_{\theta,1}(\mathbf{x})}{\partial x_2} & \frac{\partial s_{\theta,1}(\mathbf{x})}{\partial x_3} \\ \frac{\partial s_{\theta,2}(\mathbf{x})}{\partial x_1} & \frac{\partial s_{\theta,2}(\mathbf{x})}{\partial x_2} & \frac{\partial s_{\theta,2}(\mathbf{x})}{\partial x_3} \\ \frac{\partial s_{\theta,3}(\mathbf{x})}{\partial x_1} & \frac{\partial s_{\theta,3}(\mathbf{x})}{\partial x_2} & \frac{\partial s_{\theta,3}(\mathbf{x})}{\partial x_3} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

Sliced Score Matching

Computing Jacobian-vector products is scalable

$$\mathbf{v}^\top \nabla_{\mathbf{x}} s_\theta(\mathbf{x}) \mathbf{v} = \boxed{\mathbf{v}^\top \nabla_{\mathbf{x}} (\mathbf{v}^\top s_\theta(\mathbf{x}))}$$



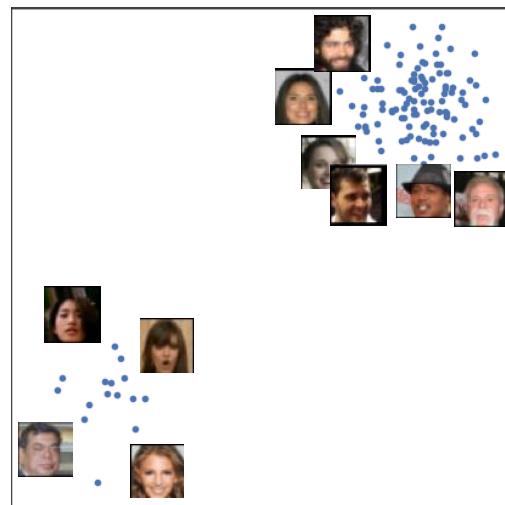
Sliced score matching

- Sample a minibatch of datapoints $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\} \sim p_{\text{data}}(\mathbf{x})$
- Sample a minibatch of projection directions $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\} \sim p_{\mathbf{v}}$
- Estimate the sliced score matching loss with empirical means

$$\frac{1}{n} \sum_{i=1}^n \left[\mathbf{v}_i^T \nabla_{\mathbf{x}} s_{\theta}(\mathbf{x}_i) \mathbf{v}_i + \frac{1}{2} (\mathbf{v}_i^T s_{\theta}(\mathbf{x}_i))^2 \right]$$

- The projection distribution is typically Gaussian or Rademacher
- Stochastic gradient descent
- Can use more projections per datapoint to boost performance

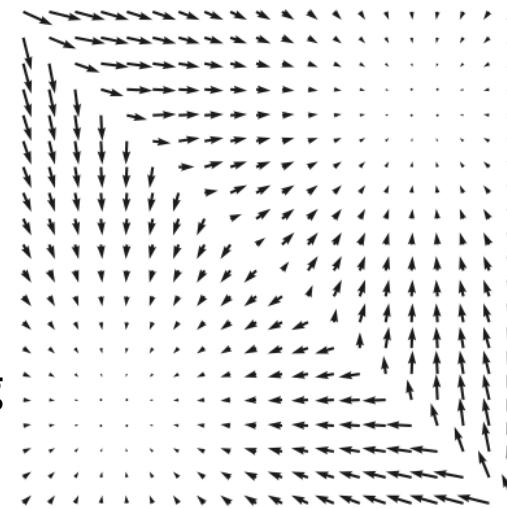
Score-based generative modeling



Data samples

$$\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\} \sim p_{\text{data}}(\mathbf{x})$$

Score
Matching

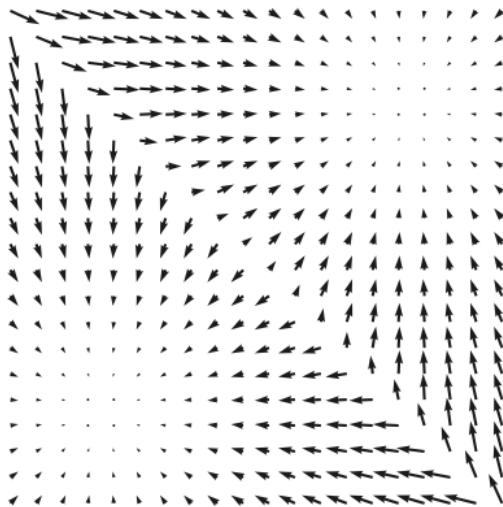


Scores

$$s_{\theta}(\mathbf{x}) \approx \nabla_{\mathbf{x}} \log p_{\text{data}}(\mathbf{x})$$

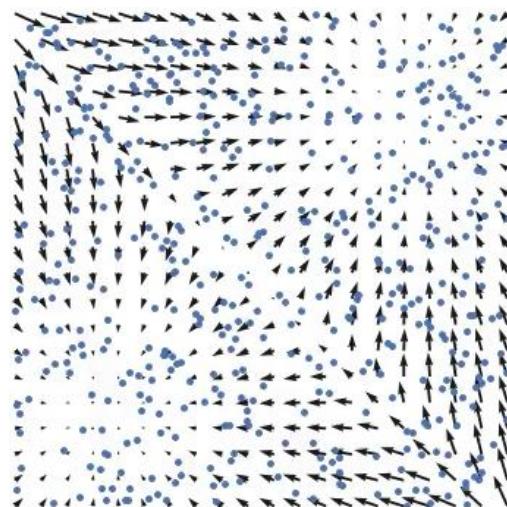
New samples

From scores to samples: Langevin MCMC



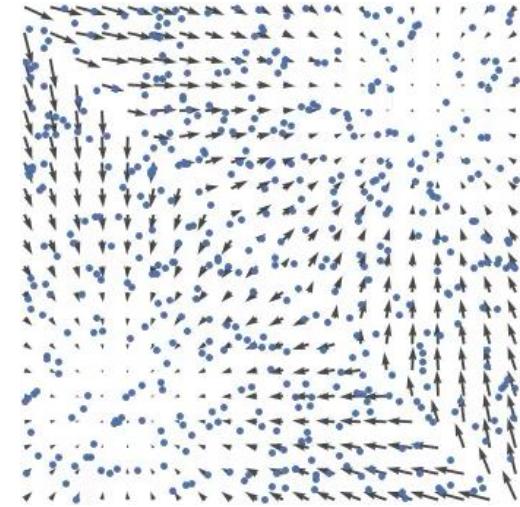
Scores

$$\mathbf{s}_\theta(\mathbf{x})$$



Follow the scores

$$\tilde{\mathbf{x}}_{t+1} \leftarrow \tilde{\mathbf{x}}_t + \frac{\epsilon}{2} \mathbf{s}_\theta(\tilde{\mathbf{x}}_t)$$



Follow noisy scores:
Langevin MCMC

$$\mathbf{z}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

$$\tilde{\mathbf{x}}_{t+1} \leftarrow \tilde{\mathbf{x}}_t + \frac{\epsilon}{2} \mathbf{s}_\theta(\tilde{\mathbf{x}}_t) + \sqrt{\epsilon} \mathbf{z}_t$$

Langevin dynamics sampling

Sample from $p(\mathbf{x})$ using only the score $\nabla_{\mathbf{x}} \log p(\mathbf{x})$

- **Initialize** $\mathbf{x}^0 \sim \pi(\mathbf{x})$
- **Repeat for** $t \leftarrow 1, 2, \dots, T$

$$\mathbf{z}^t \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

$$\mathbf{x}^t \leftarrow \mathbf{x}^{t-1} + \frac{\epsilon}{2} \nabla_{\mathbf{x}} \log p(\mathbf{x}^{t-1}) + \sqrt{\epsilon} \mathbf{z}^t$$

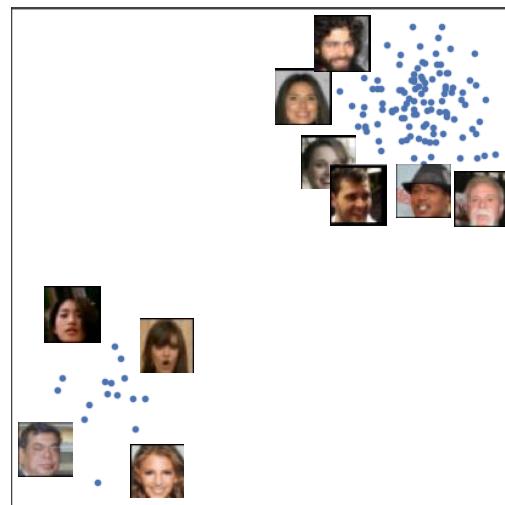
- If $\epsilon \rightarrow 0$ and $T \rightarrow \infty$, we are guaranteed to have

$$\mathbf{x}^T \sim p(\mathbf{x})$$

- Langevin dynamics + score estimation

$$s_{\theta}(\mathbf{x}) \approx \nabla_{\mathbf{x}} \log p(\mathbf{x})$$

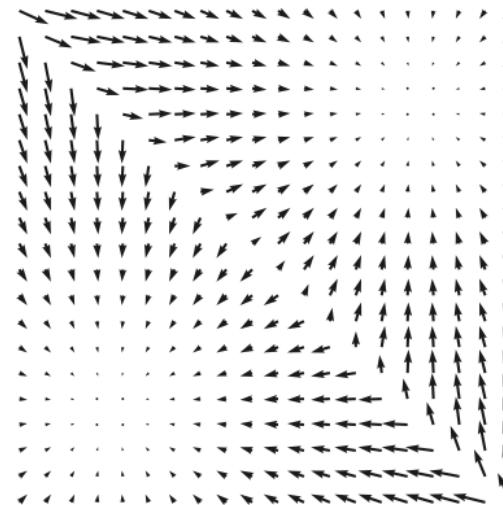
Score-based generative modeling



Data samples

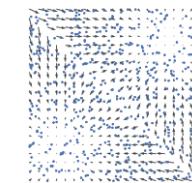
$$\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\} \sim p_{\text{data}}(\mathbf{x})$$

score
matching



Scores

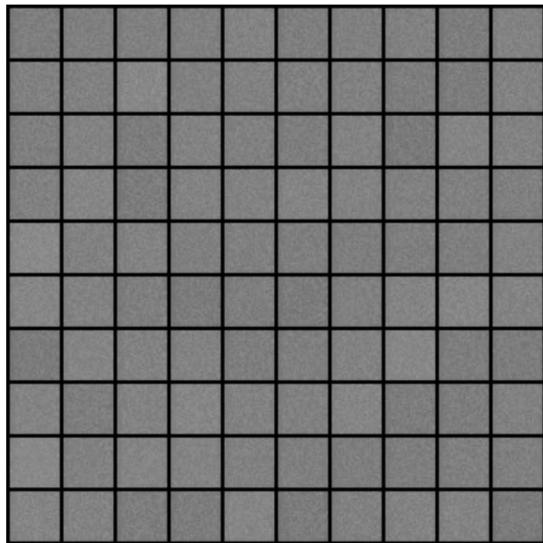
$$s_\theta(\mathbf{x}) \approx \nabla_{\mathbf{x}} \log p_{\text{data}}(\mathbf{x})$$



Langevin
dynamics

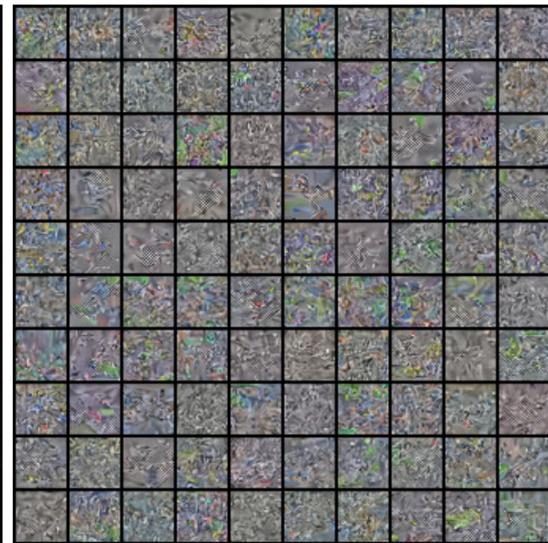
New samples

Score-based generative modeling: results



(a) MNIST

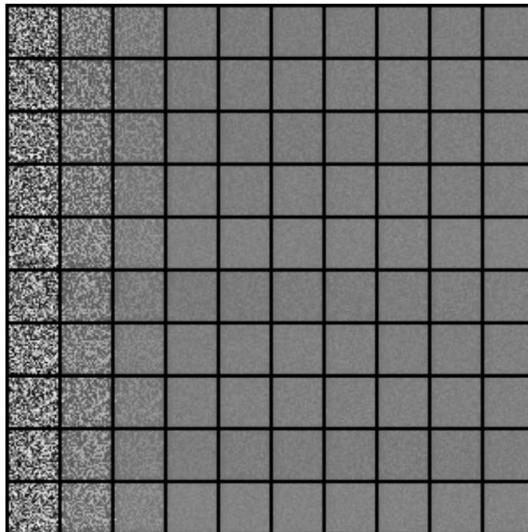
(b) CelebA



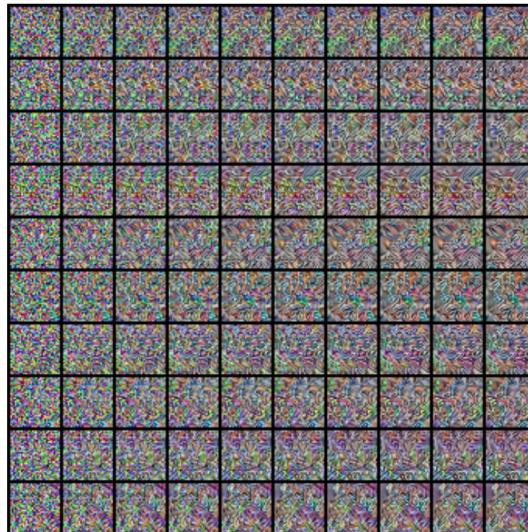
(c) CIFAR-10

Final samples

Score-based generative modeling: results



(a) MNIST



(b) CelebA

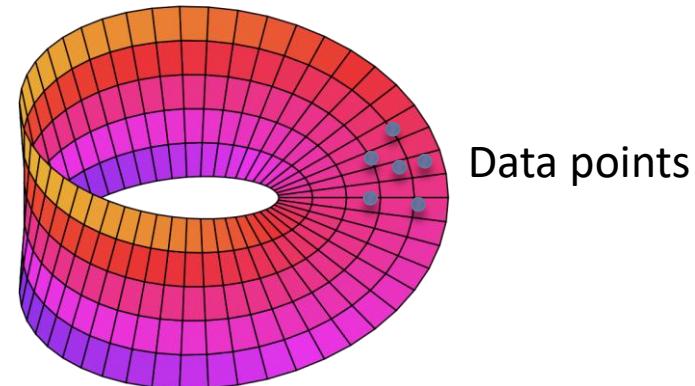


(c) CIFAR-10

Langevin sampling process

Pitfall 1: manifold hypothesis

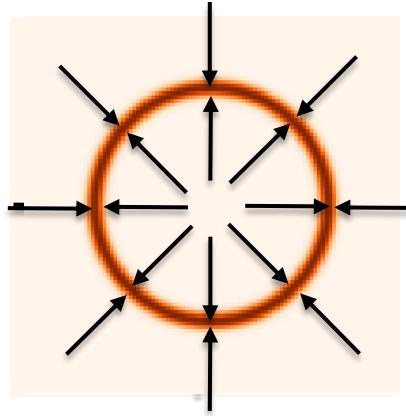
- Manifold hypothesis.



- Data score is undefined.

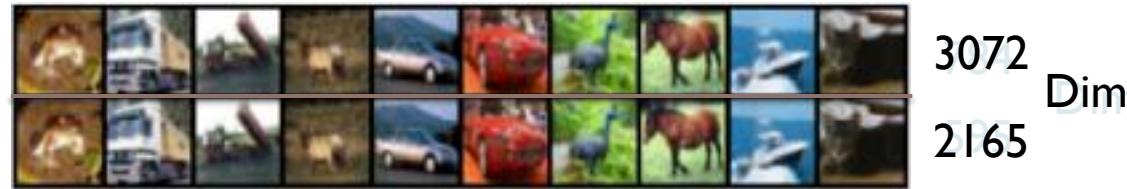
$$\nabla_{\mathbf{x}} \log p_{\text{data}}(\mathbf{x})$$

~~with a large blue X drawn over it~~

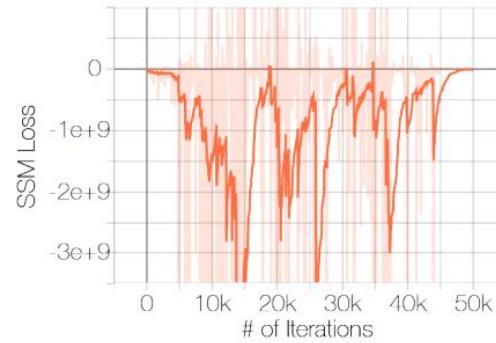


Pitfall 1: manifold hypothesis

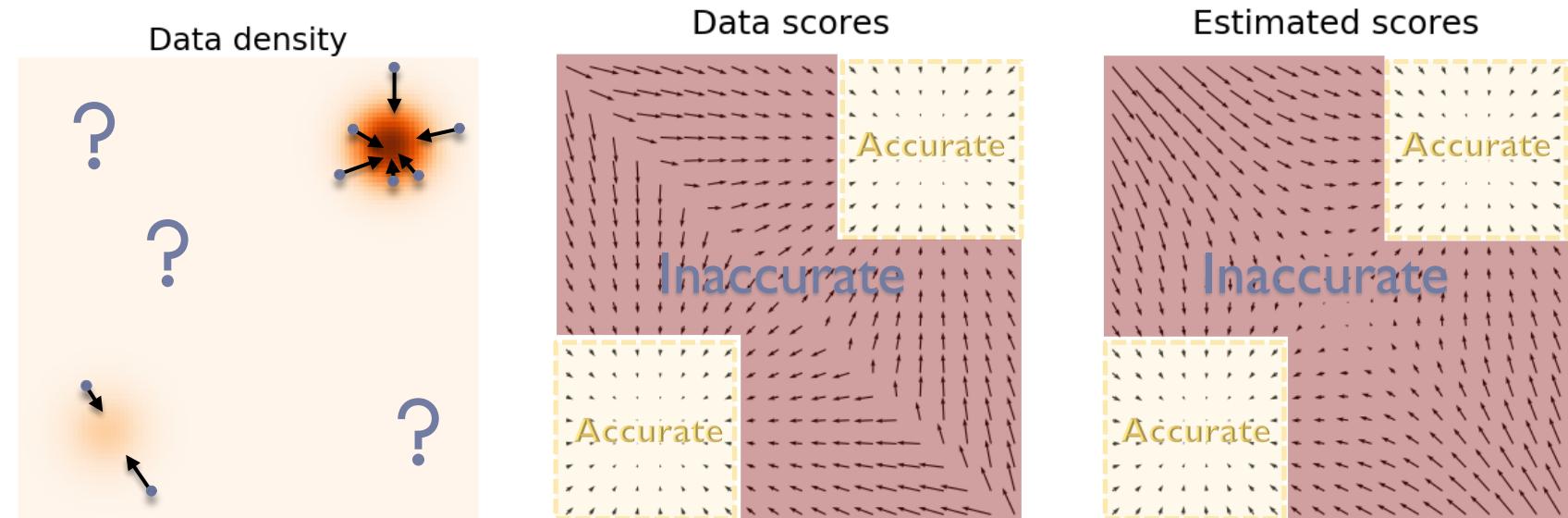
- Fitting the data with a low-dimensional linear manifold (PCA)



- Score estimation on CIFAR-10.



Challenge in low data density regions



$$\frac{1}{2} \mathbb{E}_{p_{\text{data}}(\mathbf{x})} [\|\nabla_{\mathbf{x}} \log p_{\text{data}}(\mathbf{x}) - \mathbf{s}_{\theta}(\mathbf{x})\|_2^2]$$

**Langevin MCMC will have trouble
exploring low density regions**

Song and Ermon. "Generative Modeling by Estimating Gradients
of the Data Distribution." NeurIPS 2019.

Pitfall 3: slow mixing of Langevin dynamics between data modes

- Suppose the data distribution has two modes with disjoint supports:

$$p_{\text{data}}(\mathbf{x}) = \pi p_1(\mathbf{x}) + (1 - \pi)p_2(\mathbf{x})$$

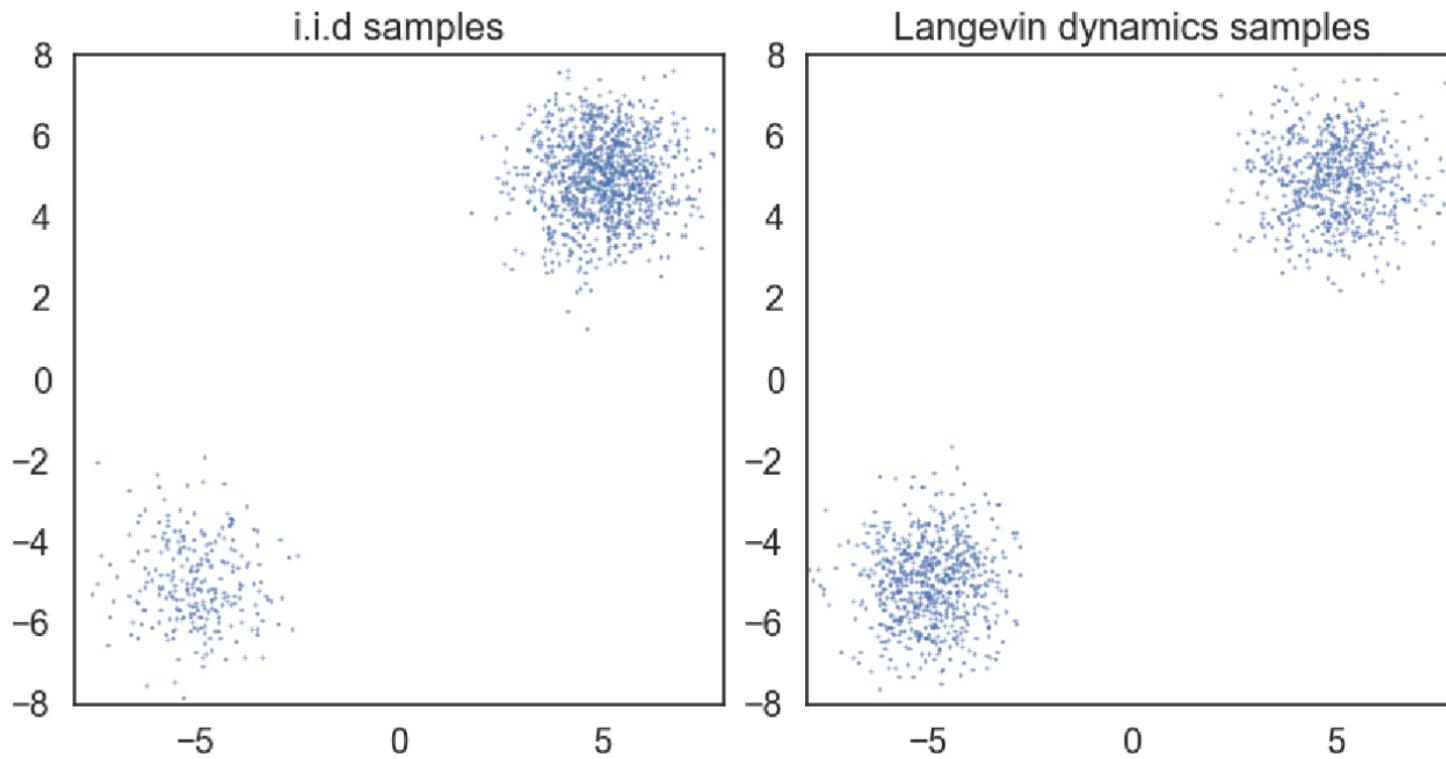
$$\mathcal{A} \cap \mathcal{B} = \emptyset \quad p_{\text{data}}(\mathbf{x}) = \begin{cases} \pi p_1(\mathbf{x}), & \mathbf{x} \in \mathcal{A} \\ (1 - \pi)p_2(\mathbf{x}), & \mathbf{x} \in \mathcal{B} \end{cases}$$

- Data score function:

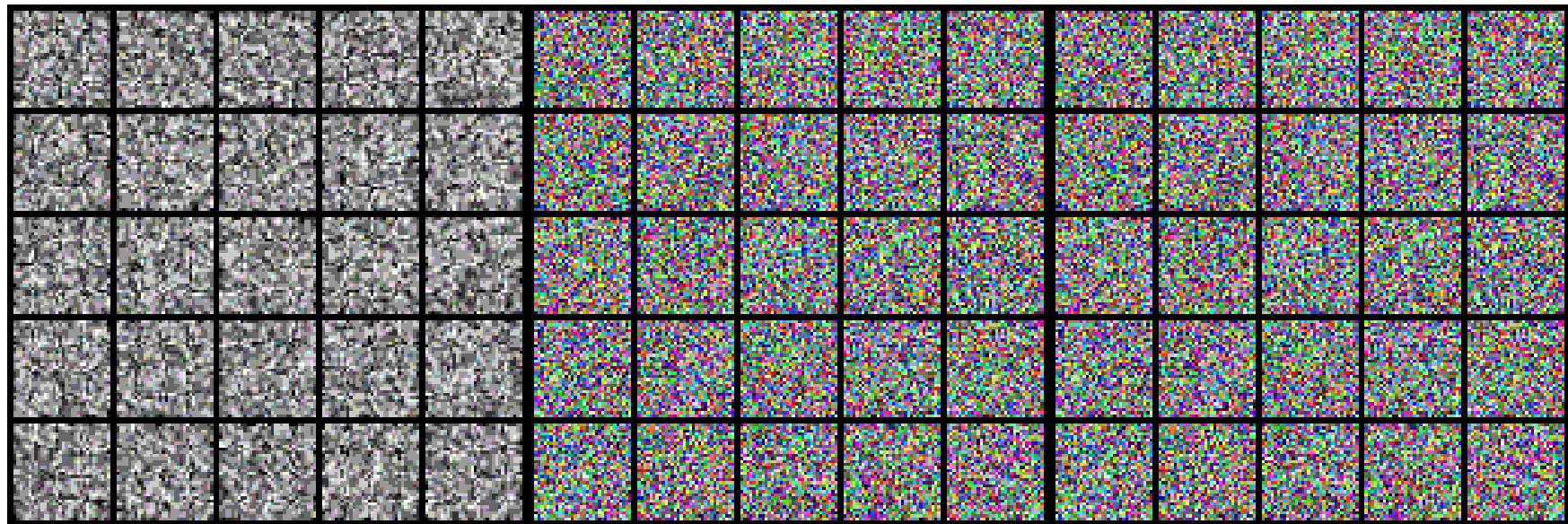
$$\begin{aligned} \nabla_{\mathbf{x}} \log p_{\text{data}}(\mathbf{x}) &= \begin{cases} \nabla_{\mathbf{x}}[\log \pi + \log p_1(\mathbf{x})], & \mathbf{x} \in \mathcal{A} \\ \nabla_{\mathbf{x}}[\log(1 - \pi) + \log p_2(\mathbf{x})], & \mathbf{x} \in \mathcal{B} \end{cases} \\ &= \begin{cases} \nabla_{\mathbf{x}} \log p_1(\mathbf{x}), & \mathbf{x} \in \mathcal{A} \\ \nabla_{\mathbf{x}} \log p_2(\mathbf{x}), & \mathbf{x} \in \mathcal{B} \end{cases} \end{aligned}$$

- The score function has no dependence on the mode weighting π at all!
- Langevin sampling will not reflect π

Pitfall 3: slow mixing of Langevin dynamics between data modes



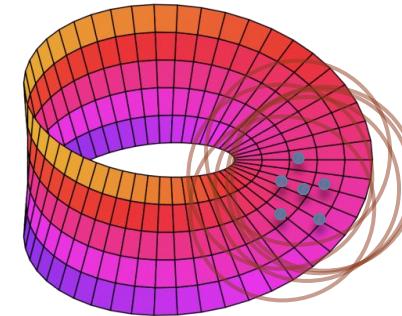
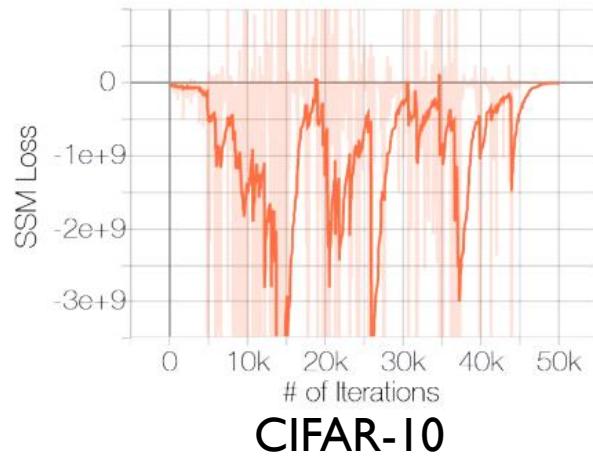
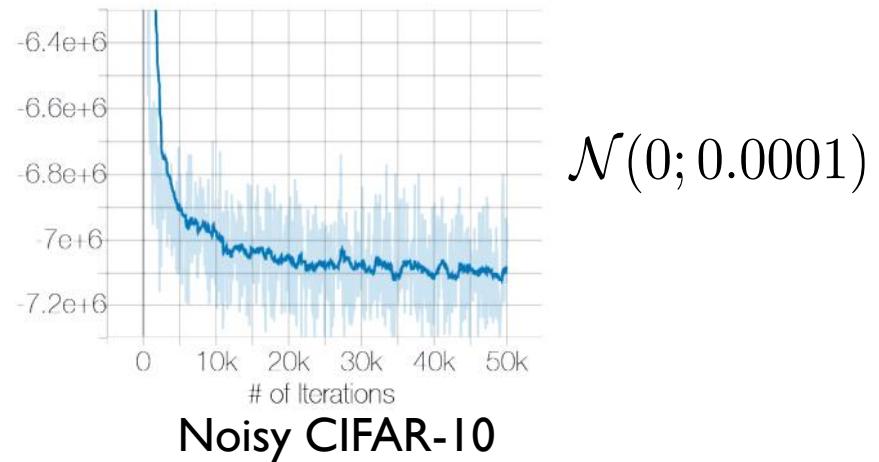
After fixing these pitfalls



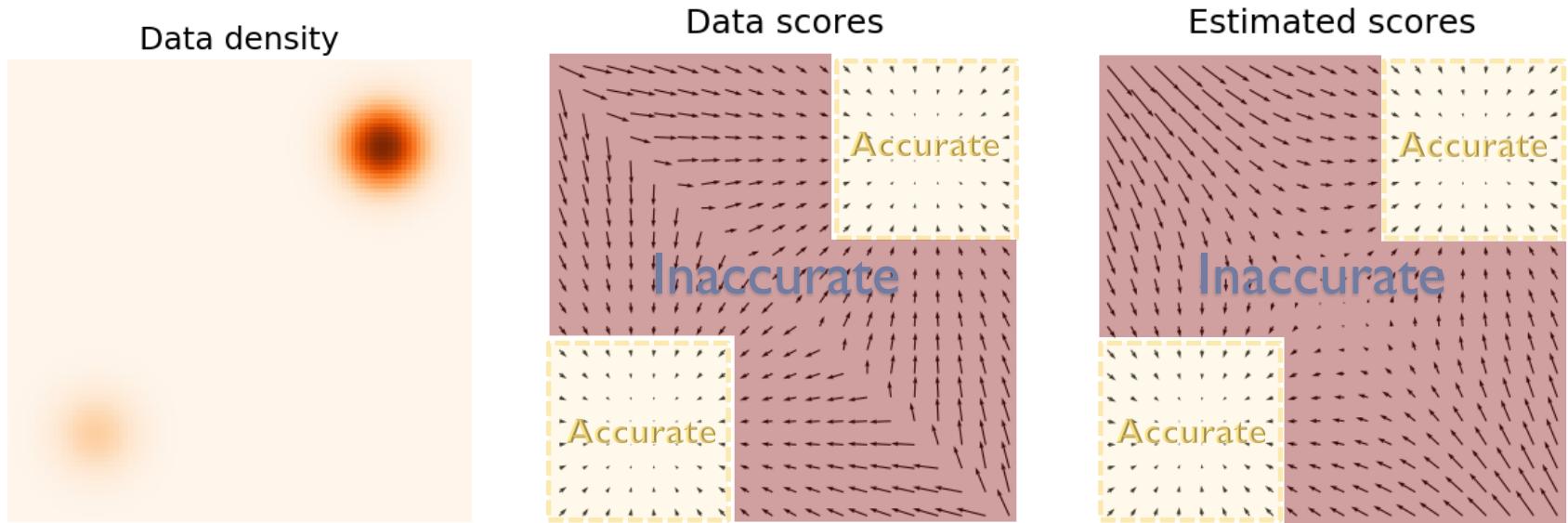
Song, Yang, and Stefano Ermon. "Generative Modeling
by Estimating Gradients of the Data Distribution."
NeurIPS 2019.

Gaussian perturbation

- The solution to all pitfalls: **Gaussian perturbation!**
- Manifold + noise
- Score matching on noisy data.

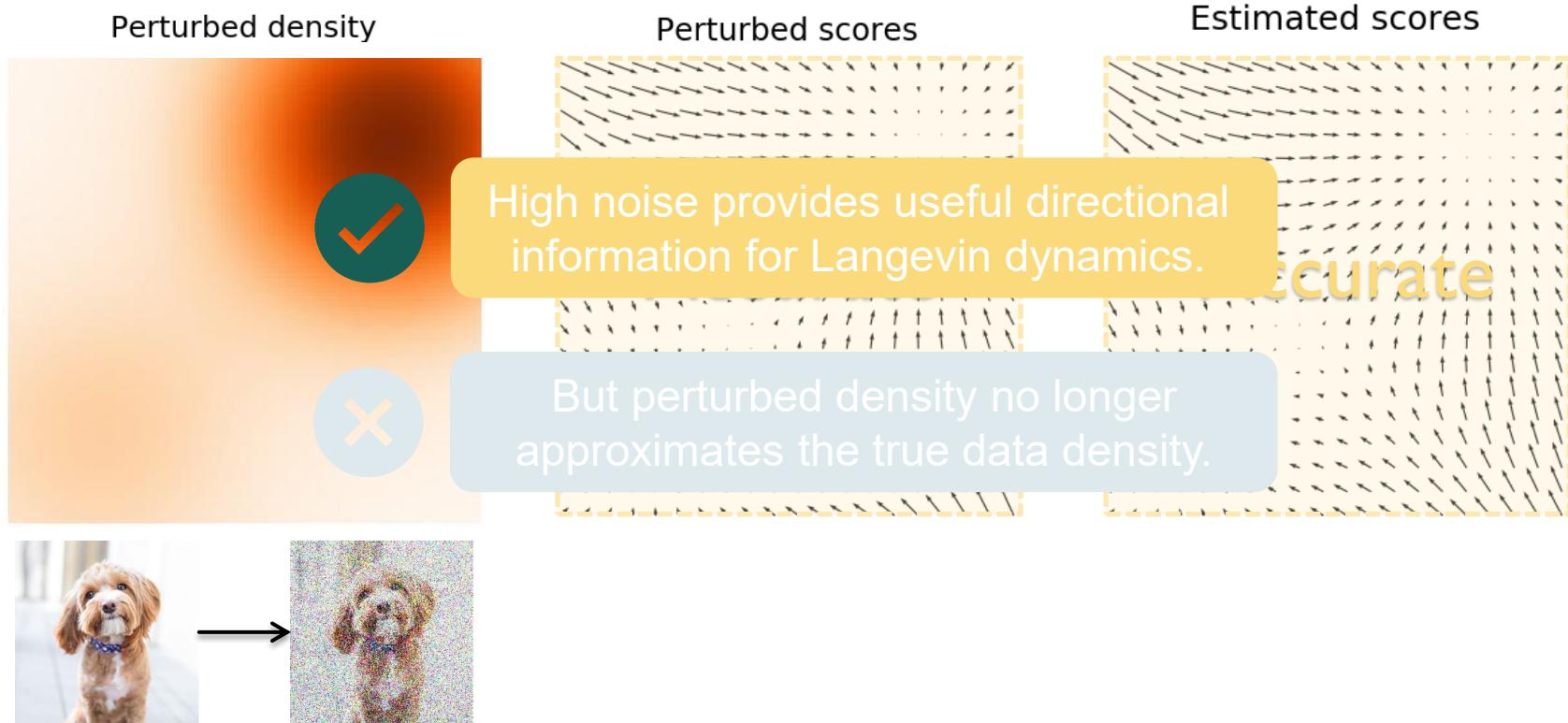


Challenge in low data density regions



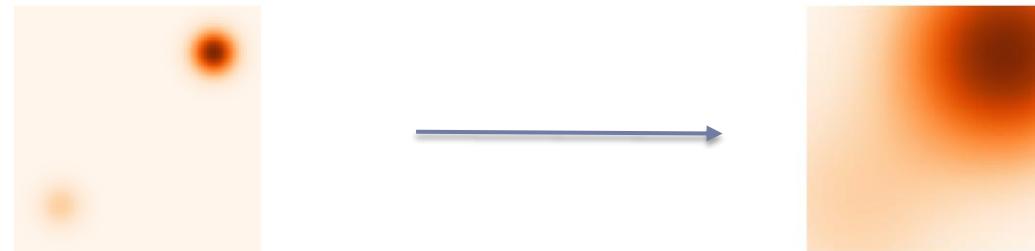
Song and Ermon. "Generative Modeling by Estimating Gradients of the Data Distribution." NeurIPS 2019.

Improving score estimation by adding noise



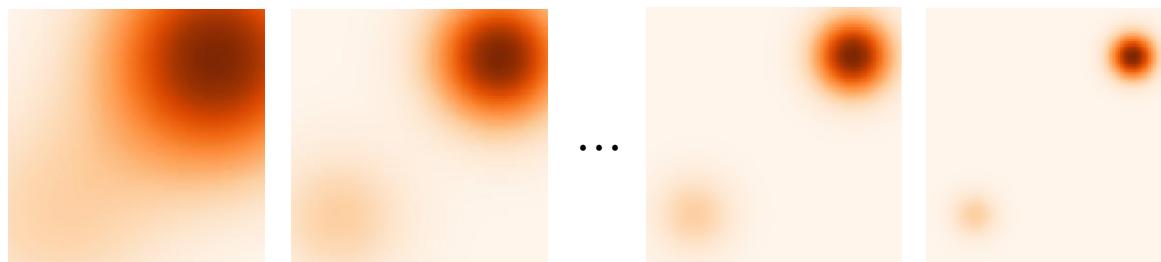
Multi-scale Noise Perturbation

- How much noise to add?

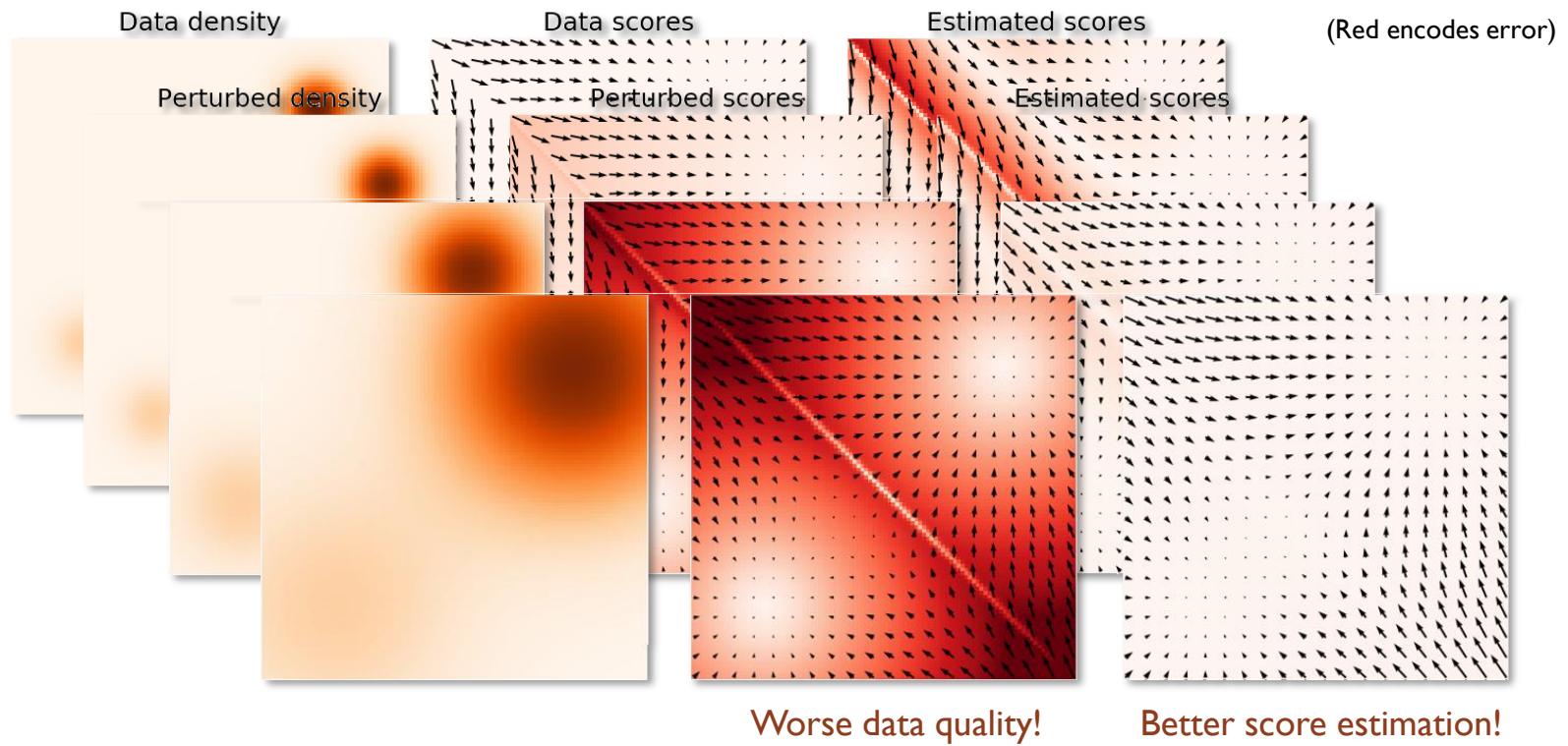


- Multi-scale noise perturbations.

$$\sigma_1 > \sigma_2 > \dots > \sigma_{L-1} > \sigma_L$$

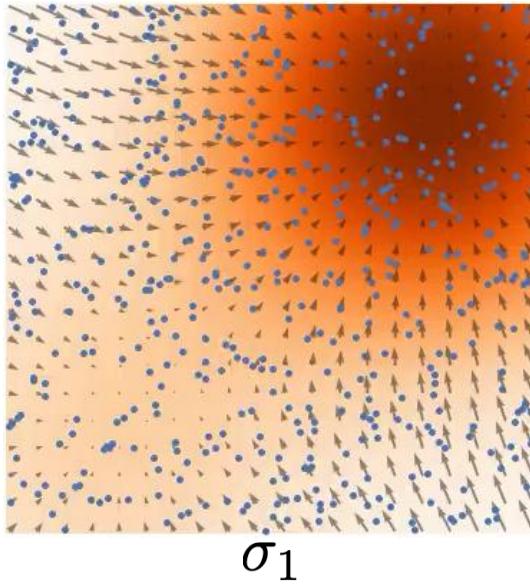
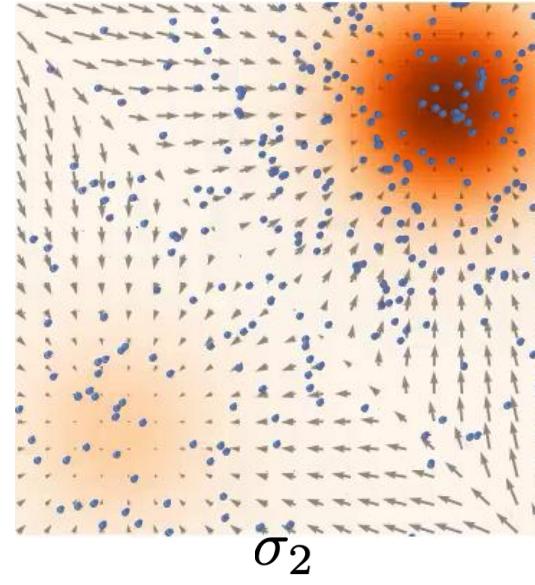
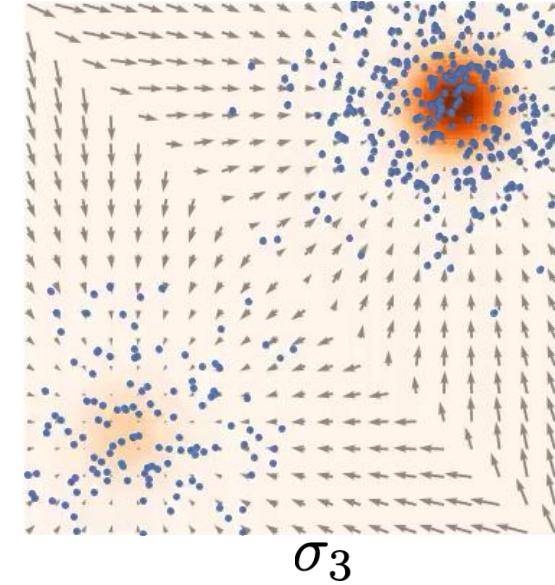


Trading off Data Quality and Estimation Accuracy

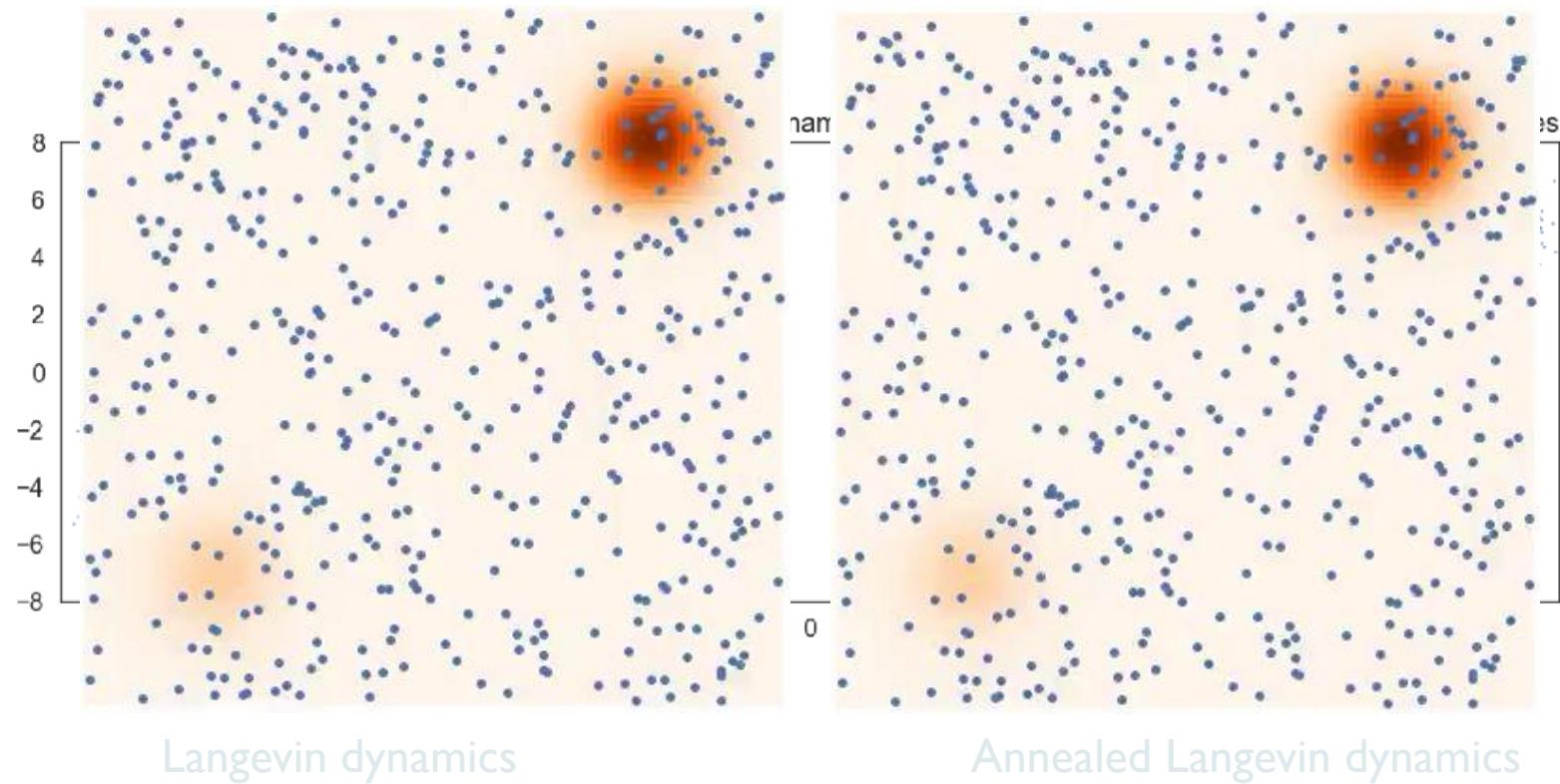


Annealed Langevin Dynamics: Joint Scores to Samples

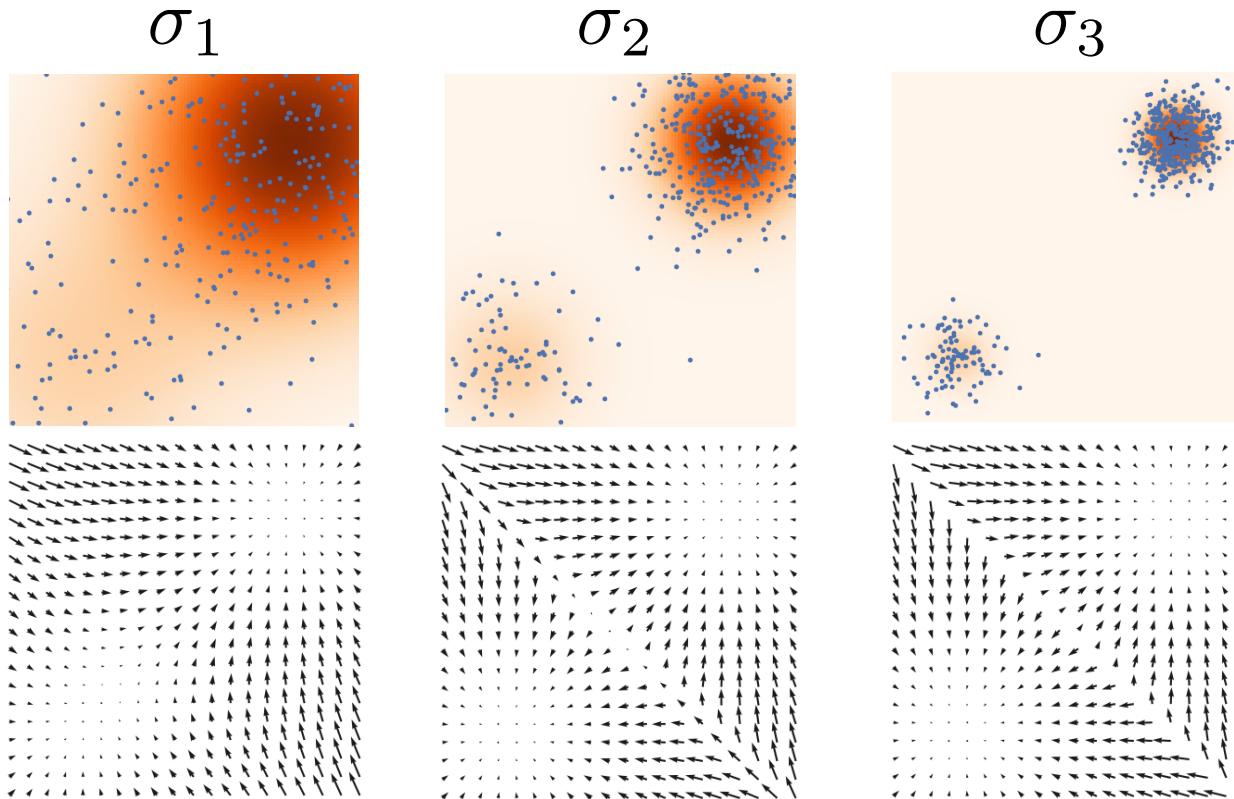
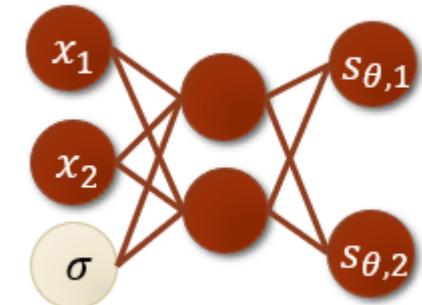
- Sample using $\sigma_1, \sigma_2, \dots, \sigma_L$ sequentially with Langevin dynamics.
- Anneal down the noise level.
- Samples used as initialization for the next level.



Comparison to the vanilla Langevin dynamics



Joint Score Estimation via Noise Conditional Score Networks



Noise Conditional
Score Network
(NCSN)

Training noise conditional score networks

- Which score matching loss?
 - Sliced score matching?
 - Denoising score matching?
- Denoising score matching is naturally suitable, since the goal is to estimate the score of perturbed data distributions.
- Weighted combination of denoising score matching losses

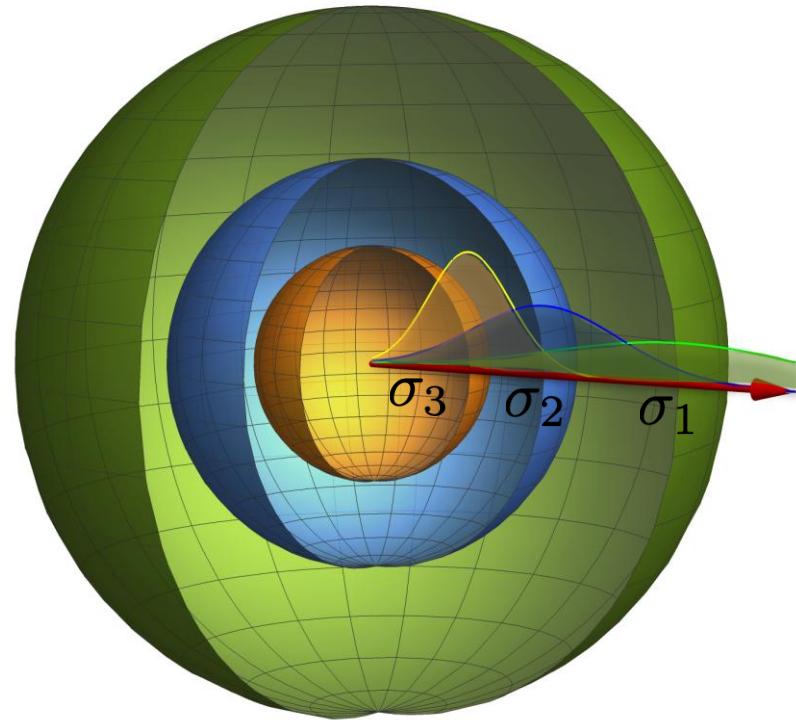
$$\begin{aligned} & \frac{1}{L} \sum_{i=1}^L \lambda(\sigma_i) E_{q_{\sigma_i}(\mathbf{x})} [\|\nabla_{\mathbf{x}} \log q_{\sigma_i}(\mathbf{x}) - \mathbf{s}_{\theta}(\mathbf{x}, \sigma_i)\|_2^2] \\ &= \frac{1}{L} \sum_{i=1}^L \lambda(\sigma_i) E_{\mathbf{x} \sim p_{\text{data}}, \mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} [\|\nabla_{\tilde{\mathbf{x}}} \log q_{\sigma_i}(\tilde{\mathbf{x}} \mid \mathbf{x}) - \mathbf{s}_{\theta}(\tilde{\mathbf{x}}, \sigma_i)\|_2^2] + \text{const.} \\ &= \frac{1}{L} \sum_{i=1}^L \lambda(\sigma_i) E_{\mathbf{x} \sim p_{\text{data}}, \mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left[\left\| \mathbf{s}_{\theta}(\mathbf{x} + \sigma_i \mathbf{z}, \sigma_i) + \frac{\mathbf{z}}{\sigma_i} \right\|_2^2 \right] + \text{const.} \end{aligned}$$

Choosing noise scales

- **Key intuition:** adjacent noise scales should have sufficient overlap to facilitate transitioning across noise scales in annealed Langevin dynamics.
- A geometric progression with sufficient length.

$$\sigma_1 > \sigma_2 > \sigma_3 > \dots > \sigma_{L-1} > \sigma_L$$

$$\frac{\sigma_1}{\sigma_2} = \frac{\sigma_2}{\sigma_3} = \dots = \frac{\sigma_{L-1}}{\sigma_L}$$



Choosing the weighting function

- Weighted combination of denoising score matching losses

$$\frac{1}{L} \sum_{i=1}^L \lambda(\sigma_i) E_{\mathbf{x} \sim p_{\text{data}}, \mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left[\left\| \mathbf{s}_\theta(\mathbf{x} + \sigma_i \mathbf{z}, \sigma_i) + \frac{\mathbf{z}}{\sigma_i} \right\|_2^2 \right]$$

$$\lambda : \mathbb{R}_{>0} \rightarrow \mathbb{R}_{>0}$$

- How to choose the weighting function: $\lambda(\sigma_i) = \sigma_i^2$
- **Goal:** balancing different score matching losses in the sum \rightarrow

$$\begin{aligned} & \frac{1}{L} \sum_{i=1}^L \sigma_i^2 E_{\mathbf{x} \sim p_{\text{data}}, \mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left[\left\| \mathbf{s}_\theta(\mathbf{x} + \sigma_i \mathbf{z}, \sigma_i) + \frac{\mathbf{z}}{\sigma_i} \right\|_2^2 \right] \\ &= \frac{1}{L} \sum_{i=1}^L E_{\mathbf{x} \sim p_{\text{data}}, \mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left[\left\| \sigma_i \mathbf{s}_\theta(\mathbf{x} + \sigma_i \mathbf{z}, \sigma_i) + \mathbf{z} \right\|_2^2 \right] \\ &= \frac{1}{L} \sum_{i=1}^L E_{\mathbf{x} \sim p_{\text{data}}, \mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left[\left\| \boldsymbol{\epsilon}_\theta(\mathbf{x} + \sigma_i \mathbf{z}, \sigma_i) + \mathbf{z} \right\|_2^2 \right] \quad [\boldsymbol{\epsilon}_\theta(\cdot, \sigma_i) := \sigma_i \mathbf{s}_\theta(\cdot, \sigma_i)] \end{aligned}$$

Training noise conditional score networks

- Sample a mini-batch of datapoints $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\} \sim p_{\text{data}}$
- Sample a mini-batch of noise scale indices

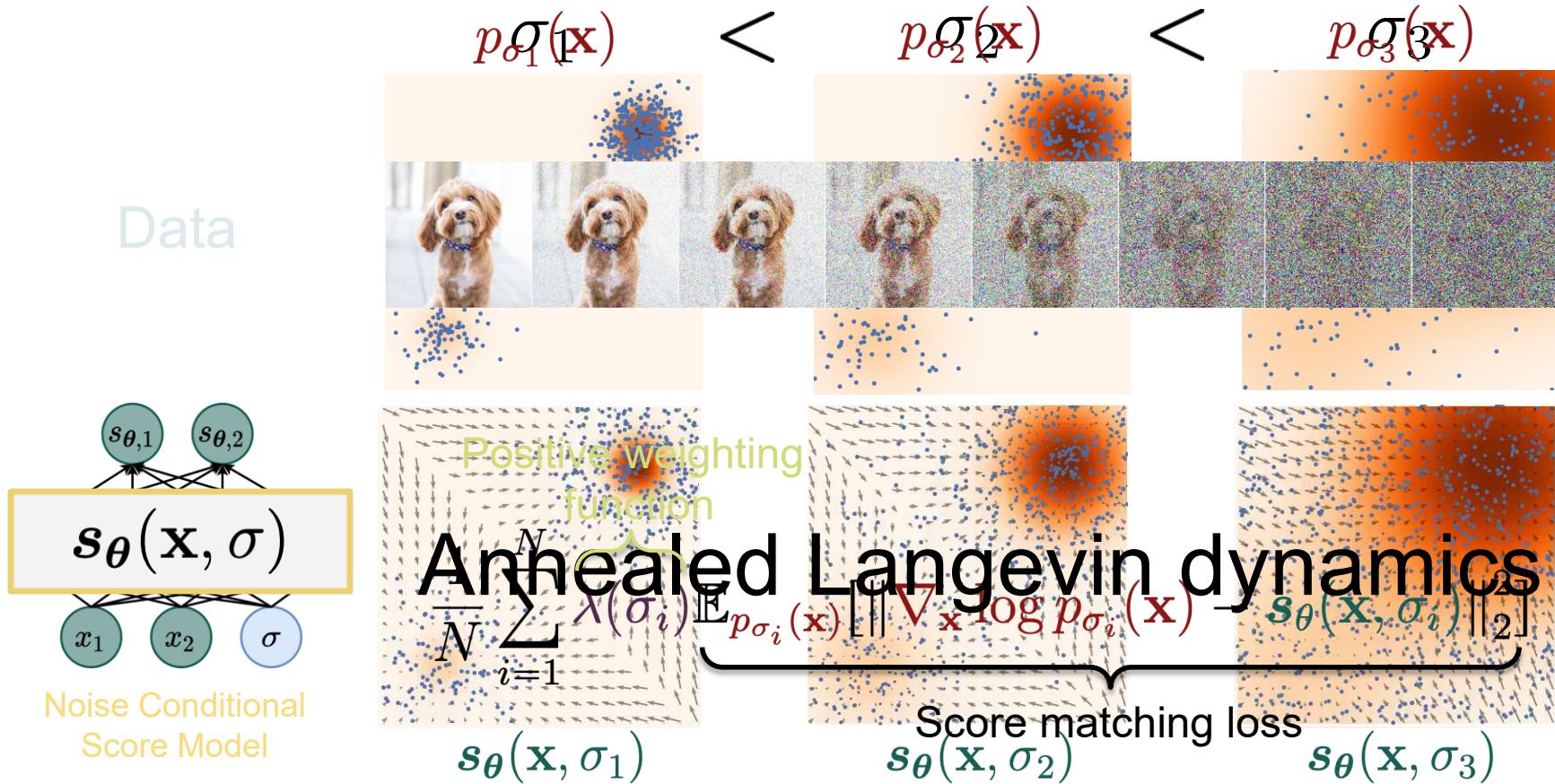
$$\{i_1, i_2, \dots, i_n\} \sim \mathcal{U}\{1, 2, \dots, L\}$$

- Sample a mini-batch of Gaussian noise $\{\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_n\} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- Estimate the weighted mixture of score matching losses

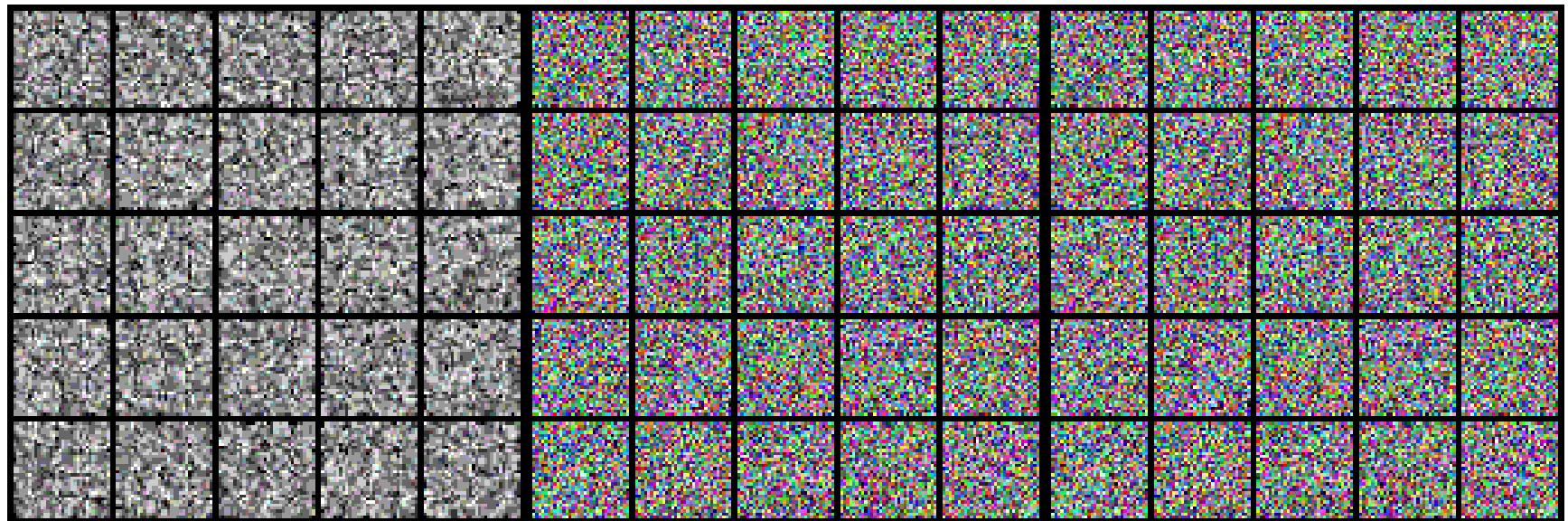
$$\frac{1}{n} \sum_{k=1}^n \left[\|\sigma_{i_k} \mathbf{s}_\theta(\mathbf{x}_k + \sigma_{i_k} \mathbf{z}_k, \sigma_{i_k}) + \mathbf{z}_k\|_2^2 \right]$$

- Stochastic gradient descent
- As efficient as training one single non-conditional score-based model

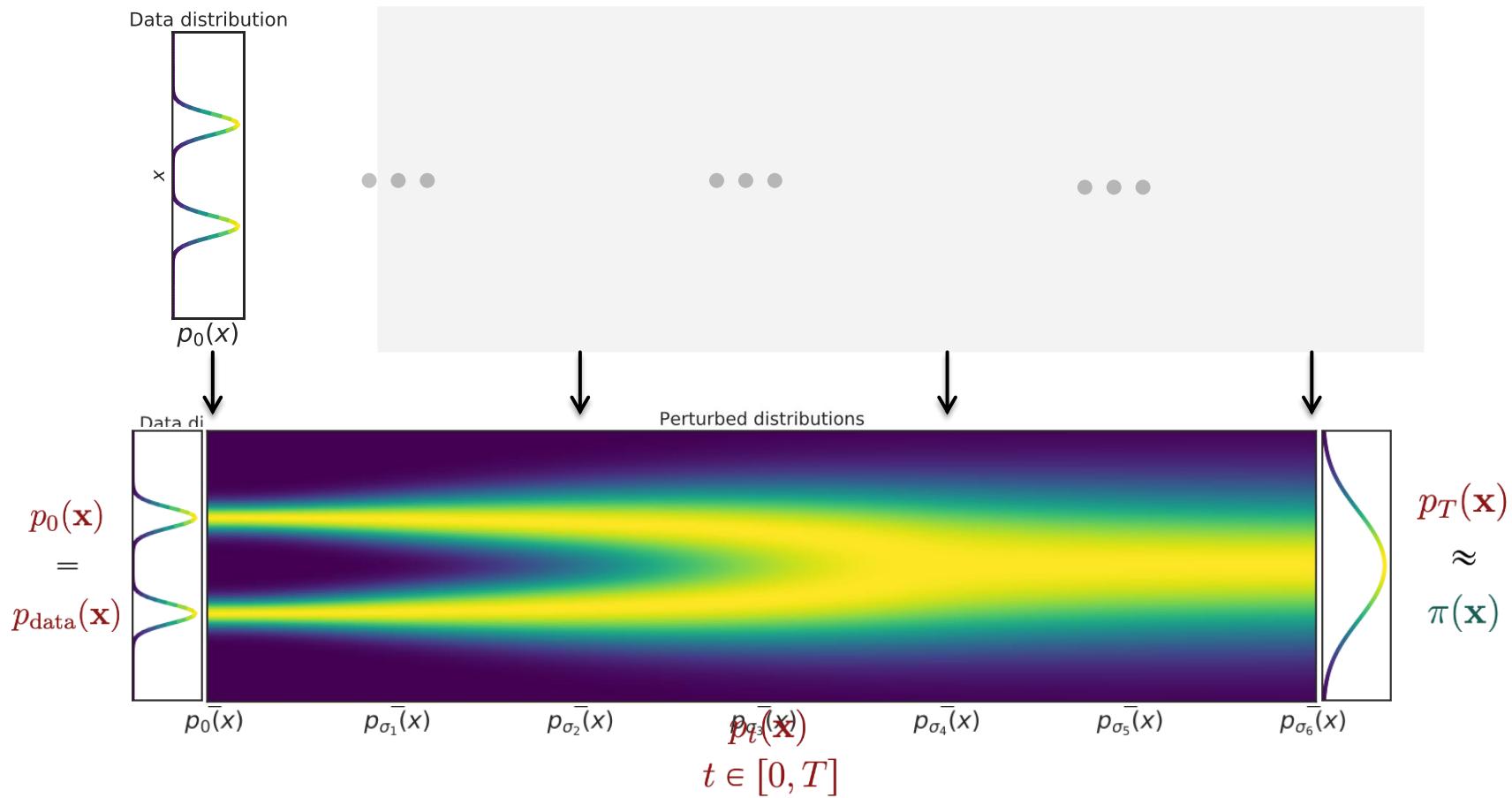
Using multiple noise levels



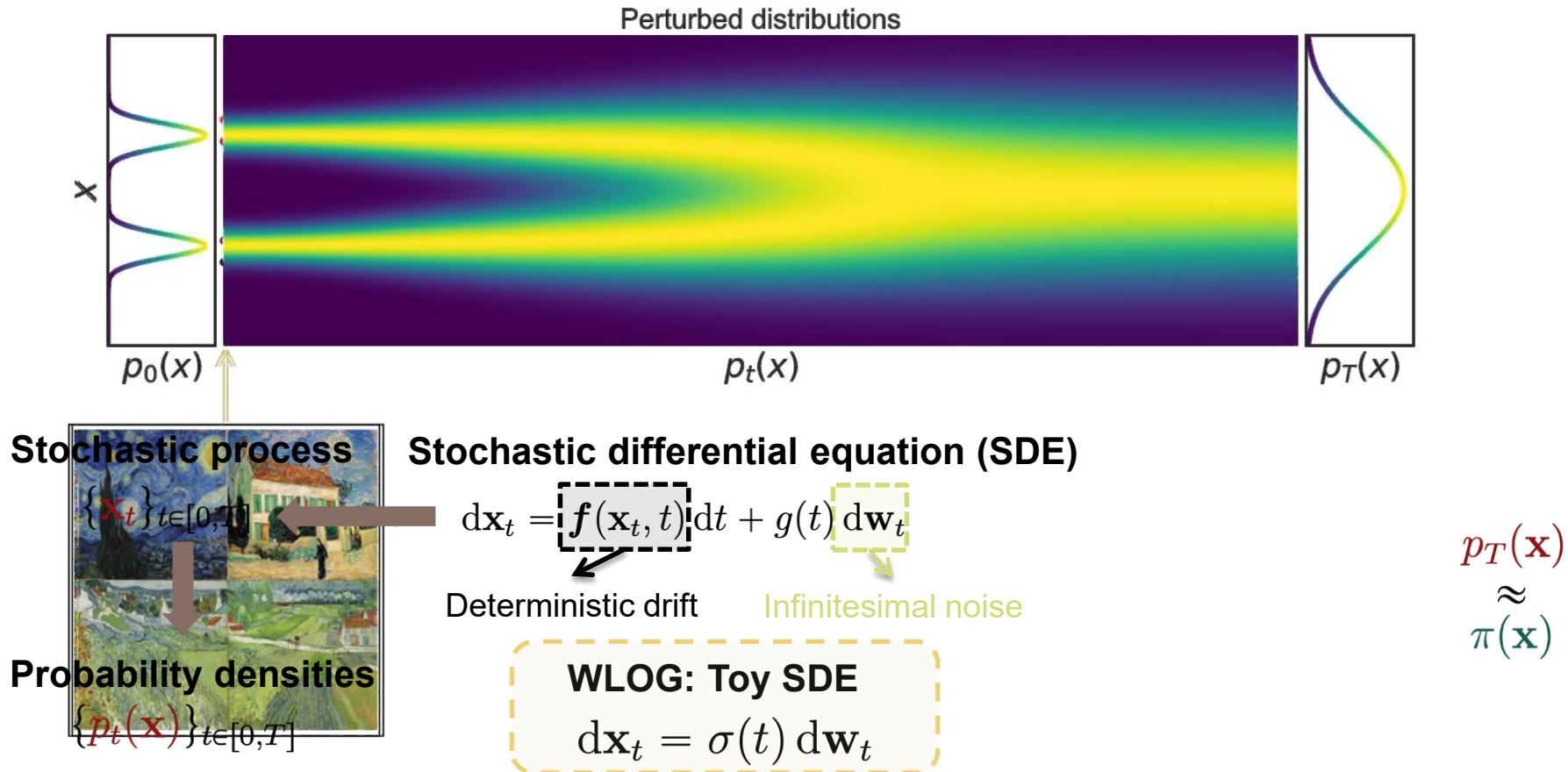
Experiments: Sampling



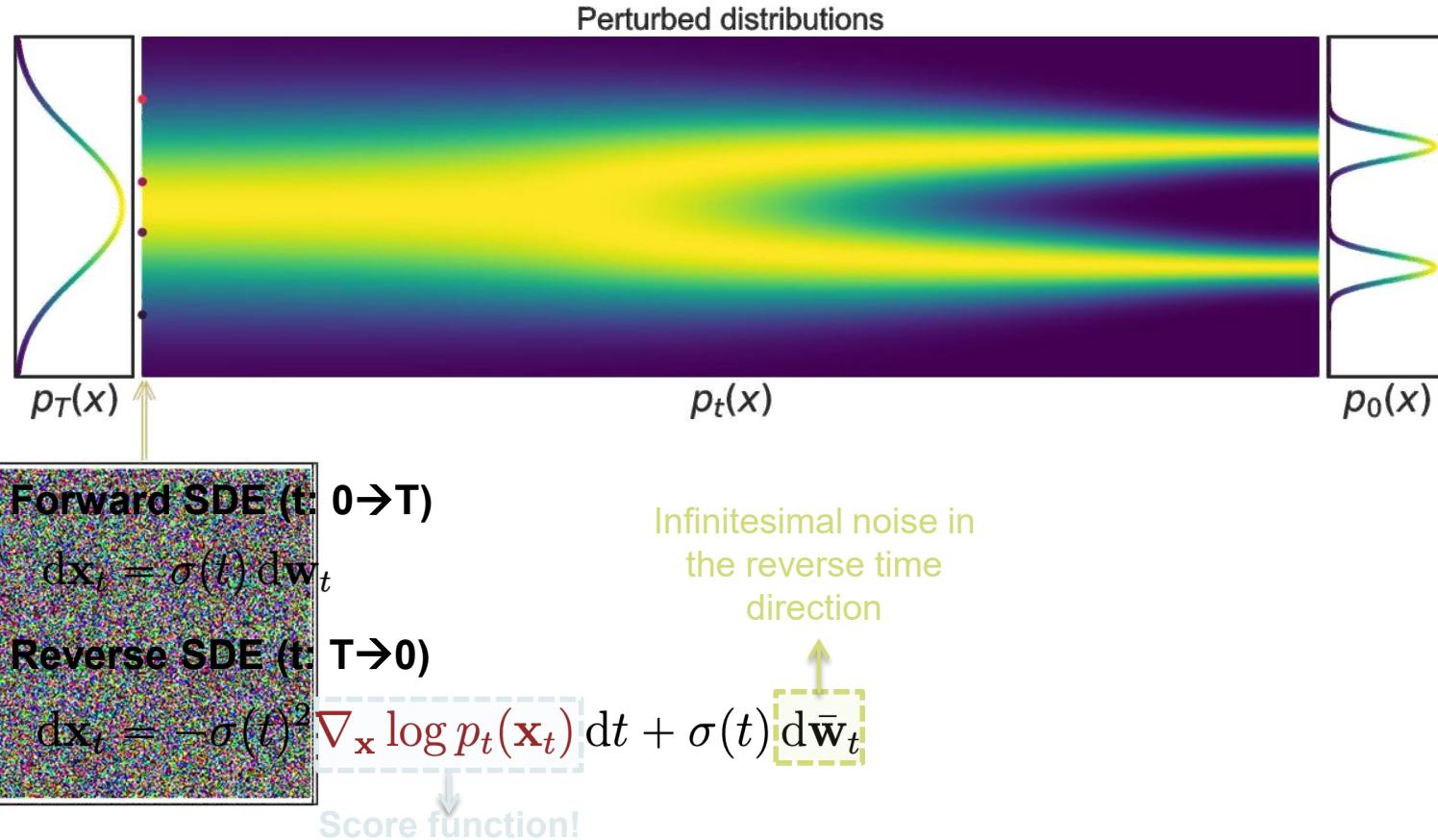
Infinite noise levels



Perturbing data with stochastic processes



Generation via reverse stochastic processes



$\pi(\mathbf{x}) \approx p_T(\mathbf{x})$

Score-based generative modeling via SDEs

- Time-dependent score-based model

$$\mathbf{s}_{\theta}(\mathbf{x}, t) \approx \nabla_{\mathbf{x}} \log p_t(\mathbf{x})$$

- Training:

$$\mathbb{E}_{t \in \mathcal{U}(0, T)} [\lambda(t) \mathbb{E}_{p_t(\mathbf{x})} [\|\nabla_{\mathbf{x}} \log p_t(\mathbf{x}) - \mathbf{s}_{\theta}(\mathbf{x}, t)\|_2^2]]$$

- Reverse-time SDE

$$d\mathbf{x} = -\sigma^2(t) \mathbf{s}_{\theta}(\mathbf{x}, t) dt + \sigma(t) d\bar{\mathbf{w}}$$

- Euler-Maruyama (analogous to Euler for ODEs)

$$\mathbf{x} \leftarrow \mathbf{x} - \sigma(t)^2 \mathbf{s}_{\theta}(\mathbf{x}, t) \Delta t + \sigma(t) \mathbf{z} \quad (\mathbf{z} \sim \mathcal{N}(\mathbf{0}, |\Delta t| \mathbf{I}))$$

$$t \leftarrow t + \Delta t$$

Predictor-Corrector sampling methods

- Predictor-Corrector sampling.
 - **Predictor:** Numerical SDE solver
 - **Corrector:** Score-based MCMC

