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» We need a framework to interact with distributions for statistical generative models.
Probabilistic generative models
Deep generative models
Autoregressive models
Variational Autoencoders
Generative adversarial networks
Normalizing Flow
Energy-based models
Score-based models



How to represent probability distributions?

- Probability density function (p.d.f.) or probability

mass function (p.m.f.)
p(x)

- Autoregressive models

- Flow models

po(x) = p(z)|det(Jy,(x))|, 2z = fo(x)




How to represent probability distributions?

- Probability density function (p.d.f.) or probability
mass function (p.m.f.)

p(x)

- Variational autoencoders

pl) = [ p@)p(x]| 2) da O - RRS
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- Energy-based models




How to represent probability distributions?

- Probability density function (p.d.f.) or probability
mass function (p.m.f.)

p(x)

- Pros

Maximum likelihood training
Principled model comparison via likelihoods

- Cons

Special architectures or surrogate losses to deal with intractable
partition functions



How to represent probability distributions?

- Sampling process

- Generative adversarial networks (GANSs)

Random

z ~ p(z)
X = go(z)

—

Generator

GAN



How to represent probability distributions?

- Sampling process

- Pros
Samples typically have better quality

- Cons

Require adversarial training. Training instability and mode
collapse.

No principled way to compare different models
No principled termination criteria for training



How to represent probability distributions?

When the pdf is differentiable, we can compute the
gradient of a probability density.

Score function Vxlogp(x)
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How to represent probability distributions?

- When the pdf is differentiable, we can compute the
gradient of a probability density.

Score function Vxlogp(x)

p(x) V. logp(z)
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Recap on energy-based models

- Deep Energy-Based models (EBMs)

f@(X) c R
efG(x)

- Maximum likelihood training: ~ max fo(Xsrain) — log Z(0)
Contrastive divergence

v@f@ (Xtrain) — VQ 108 Z(Q) ~ v@f@ (Xtrain) — v@f@ (Xsample)

Requires iterative sampling during training

Xsample ™~ Do (X)



Recap on energy-based models

- Deep Energy-Based models (EBMs)

f@ (X) cR
efG(x)
pB(X) — Z(@)

- Minimizing Fisher divergence:

1

0 2 B, [[| Vx 108 Paata(%) — Vi log po ) ]

Score matching

1
éEprdata [”vx log pdata(x) — Vx log Do (X) “g]

1 1
=§EX"’pdata [5 Vs log po(x) |5 + tr(V2 logpg(x))] +const.



Score matching for training EBMs

- Score function of EBMs

Vi log ps(x) = Vi fo(x) — Vi IOgZ( ) = Vifo(x)

—0

- Score matching for EBMs:

1
Bxvpana| 5 V5108 o)} + (V2 10g po ()|

gy | o)+ 41(V2fo(x)]

- Is score matching limited to EBMs!?
Autoregressive models
Normalizing flow models



Score-based models

- What’s the most general model that can be efficiently
trained by score matching?

EBMs

MAFs  flow

Auto-
regressive

Directly model
the vector field

So (X) of gradients!

- Score-based model
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Probability density
Pdata (X)

Score estimation by training score-based models
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Score estimation by training score-based models

- Given:i.i.d. samples  {x1,X2," " ,Xn} ~ Pdata(X)

- Task: Estimating the score  Vx10g Pdata(X)

- Score Model: A learnable vector-valued function
- Goal: $9(X) ~ Vi log paata(x)  8g(x) : R* — R?

- How to compare two vector fields of scores?

/V
A Average
- A P Euclidean distance
Vx log pdata(x) A — . ) Al
-~/ Zx 225+ over the space
Ay /
/ A _?
==
"/V -



Score estimation by training score-based models

- Objective: Average Euclidean distance over the whole
space.
1

§EX~’Pdata [” VX log Pdata (X) — S¢ (X) ”3]

(Fisher divergence)

Score matching:

1

Exp, .. [5 Iso(x)]I5 + tr( w )]

Jacobian of sg(x)
Requirements:

The score model must be efficient to evaluate.

Do we need the score model to be a proper score function (i.e.,
gradient of a scalar “energy” function)?



Score matching is not scalable

- Deep neural networks as more expressive score
models

Score Matching
is not Scalable!

- Compute [jss(x)|; and tr V’MX @

Os9.1(x) O(d) Backprops!
8331 1:9;5_12;), Dsp 1(x)  0sp 1(x)

Os0.2(x) (x) = oiiit) Froalal  0s0at
O 0 oAy Heaitsy
Dsp 5(x) Gor e | O

851?3



Denoising Score Matching (Vincent, 2011)

- Consider the perturbed distribution

1 2 3 4 5

~

- Score estimation for Vzlogg,(X) iseasier ¢,(x) ~ p(x)
- If the noise level is small, this is a good approximation



Denoising score matching

Denoising score matching (Vincent 2011): -
matching the score of a noise-perturbed
distribution

1 - ~
EEirvqg[”Vi log g, (%) — 8(X)||5]

Lo I
=2 f 4 (%) [V 1og g5(%) — s5(%)|; d%
1 1

=5 | @ 1xloga @B ax+ 5 | 0,60 ss(0)4

- f 4o (%) Vz log g, (%)" 8p(x) dx

X

1 112 - - “y 1
= const.+ Exq, [[|86(X)[2]— an(x)vi log g, (%) 89(X) d%

4



Denoising score matching

- J G0 (X) Vi log g5 (X)" 8p(X) dX

[y L %)" 84(%) dx
=_Ur‘qg(X)qU(i)ViqU(X) 9( )d

= — V;{qa(i)TSQ(i) dx
T

= vi(fpdata(x)qg(i|x) dx) so(X) dX
:_:(deata(x)viqa(ﬂ )dx)T o(%) A
J(det( )go (X | X) Vi log g, (X |x)dx) o(%) d%
i det X)go(X | X)Vxlog g, (X | x)"s6(X) dx d%

x~pd a(x),X~qs (X|x) [v log qa( | )Tse (i)]




Denoising score matching

FES L e [V 10g 40 (%) — so®)|I]
. A Lx~qs x o — o4
pdata(x) 2 ! ?

1 o - ~ -
= const.+ Bz, [ 56(%) 2]~ [ 4o (%) Vi log g5 (%) 80(%) dX
1. . 3 _
) = const.+ Fxq, [[|50(3)||2] = Bx~paaea (0)5~a0 (10 Vi 108 4 (X | x)"s4(%)]

1 ~ - 2
=const. + §Ex~pdata(x),i~qa(f(|x)[”39 (X) — Vzlog g (X | x)|I3]

1 - 2
5 Exepanao) a0 0 [ Vi 10g 00 (% | %) 5]

1 . -
= CONSE. + 5 By o) g 0 [180(%) — Vi log 6, (& | %) 3] + const.

X 1

~ ~ 2
= 5 B pgaia (.5~ 0 (20 L[| 80(X) — Vi log g (X | x)|[,] + const.



Denoising score matching

- Estimate the score of a noise-perturbed distribution
1 ~ ~\ 12
§Ei""pdata|:||86(x) — Vi log ch(x)Hz]

[[|s6(%) — Vzlog g, (% | x)||5] + const.

= § Exwpdata(x)ai’”q" (%)

Vi log¢-(X | x) IS easy to compute
(X | x) = N(x | XLO'QI)

X —X

Vxloggo(X [ x) = ——

- Pros: efficient to optimize even for very high
dimensional data, and useful for optimal denoising.

- Con: cannot estimate the score of clean data (noise-
free)



Denoising score matching

- Sample a minibatch of datapoints {x1,X2, - , X} ~ Pdata(X)
- Sample a minibatch of perturbed datapoints

~

{ilai% T 7)271} ~ qU(X)
- Estimate the denoising score matching loss with empirical
means X; ~ G0 (X | Xi)
1 ¢ 8 N
o D [llss(%:) — Vs log g0 (%: | x:) 3]
i=1

- |f Gaussian perturbation

n ~
1 X; — X; 2]
2

s+

- Stochastic gradient descent
- Need to choose a very small ¢!

2n, 4 o2
1=1



Denoising Score Matching (Vincent, 2011)
- Consider the perturbed distribution
(% | %) = N(x0°) a0(3) = [ pas (x| x)dx

- Score estimation for Vxlog ¢, (x) is easier
1 2

Score matching §Eqa ) IV log ¢o (%) — s(X)|[5]
- 1 1 . 12
Denoising :§Ep(X)EqU x| || g—(x —X) —sp(x)]|5] + const.

S0 (i) tries to estimate the noise that was
added to produce x

=X+ noise



Sliced score matching

- One dimensional problems should be easier.
- Consider projections onto random directions.

e et o
= === oA i
V« log pdata(x) ﬁv _’//' 4-4: ?2 Z\ yy'
= - x
/' =4 g
So(x) N {: / < é st i% 7
> Z /

Song*, Garg*, Shi, Ermon. "Sliced Score Matching: A Scalable
Approach to Density and Score Estimation." UAI 2019.



Sliced score matching

- Objective: Sliced Fisher Divergence

1
§Ev"‘?’v Ex"'fpdata [(VTVX log Pdata (X) o VT89 (x))Q]

- Integration by parts

;

V 89
0sg,1(x)  0Osg,1(x) 0Osp,1(%X)
8$1
(01 22031 olicld cdm) ng
839 3(x) 839 3(x) 639 3(x)

ox1 Oxo O0x3

1 2




Computing Jacobian-vector products is scalable

VT Vas6(X)v = vV, (vTisg (x))!

One Backprop!

& Sliced Score Matching

1 \\ 1 is scalable

VIV (vTsf&) v x)) /.) vTsp(x)
@ Slightly slower than

denoising score matching




Sliced score matching

- Sample a minibatch of datapoints {xi,X2,- - ,Xn} ~ Pdata(X)
- Sample a minibatch of projection directions {vi,v2, - ,Vvn} ~ Dy

- Estimate the sliced score matching loss with empirical
means

2 [V Vsl + 6T

- The projection distribution is typically Gaussian or
Rademacher

- Stochastic gradient descent

- Can use more projections per datapoint to boost
performance



Score-based generative modeling
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New samples

Data samples

86(x) ~ Vi 10og pqata(X)

3 Xn} ~ DPdata (X)

{x1,%a," -



From scores to samples: Langevin MCMC
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Follow noisy scores:
Langevin MCMC

~ ~ € - ~
s (x) X1 < X + §Se(xt) 2~ N(0,T)

Scores Follow the scores

~ ~ € -
Xi4+1 < Xt + 559(Xt) + Ve z



Langevin dynamics sampling

Sample from p(x) using only the score Vi logp(x)
- |Initialize x° ~ 7(x)
- Repeat for t+1,2,---,T

z' ~ N(0,1)
x! — x4 %Vx logp(x'™1) + /e 2!

- Ife > 0and T — oo, we are guaranteed to have
x' ~ p(x)

- Langevin dynamics + score estimation
8¢(x) ~ Vy log p(x)



Data samples

{X17 X9, ~ pdata(x)

S

score

matching - - -

Score-based generative modeling
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Score-based generative modeling: results

(a) MNIST (b) CelebA (c) CIFAR-10

Final samples



Score-based generative modeling: results

(a) MNIST (b) CelebA (c) CIFAR-10

Langevin sampling process



Pitfall 1: manifold hypothesis
- Manifold hypothesis.

Data points

- Data score is undefined.

vx 1%&‘5&()()




Pitfall 1: manifold hypothesis

- Fitting the data with a low-dimensional linear
manifold (PCA)

3072
2165

Dim

- Score estimation on CIFAR-10.

/W -

i
|
(

SSM Loss
E;S-



Challenge in low data density regi

Data scores Estimated scores

L T L

Data density
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1
5Ep. 0 [ Vx 10g Paata(x) — s0() 3]

Langevin MCMC will have trouble
exploring low density regions

Song and Ermon. “Generative Modeling by Estimating Gradients
of the Data Distribution.” NeurlPS 2019.



Pitfall 3: slow mixing of Langevin dynamics between data
modes

- Suppose the data distribution has two modes with disjoint

ts:
>Upports Pdata(X) = mp1(x) + (1 — 7)p2(x)

. x) — Wpl(x)n xe A
ANB=  paa) {(171‘)192()(): xebB

- Data score function: (
Vx[log m + log p1 (x)], xeA
| Vxllog(l —7) +logpa(x)], x€B
(Vxlogpl(x), x e A
| Vi log pa(x), x e B
- The score function has no dependence on the mode
weighting T at all!

vx logpda,ta(x) = 4

- Langevin sampling will not reflect



Pitfall 3: slow mixing of Langevin dynamics between

data modes
g I.i.d samples . Langevin dynamics samples
6 6 A%
Sl
4 4 -.'_g“‘ L,
2 2
0 0
-2 | -2
-4 . : -4
-6 | -6
-8 ‘ -8
-5 0 -5 0 5




After fixing these pitfalls

Song, Yang, and Stefano Ermon. "Generative Modeling
by Estimating Gradients of the Data Distribution.”
NeurlPS 2019.



Gaussian perturbation

- The solution to all pitfalls: Gaussian perturbation!

- Manifold + noise

- Score matching on noisy data.

6.4e+6—

) [ A/ 66016 |
8 -led ,K N/Y 68016 | N<O7 00001)
% 2649 v 7c16!

+9 7.26+6—|

0 10k 20k 30k 40k 50k 0 10k 20k 30k 40k 50k
i of lterations # of Ilterations

CIFAR-10 Noisy CIFAR-10



Challenge in low data density region

Data scores Estimated scores

L T I A

Data density
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Song and Ermon. “Generative Modeling by Estimating Gradients
of the Data Distribution.” NeurlPS 2019.



Improving score estimation by adding noise

Estimated scores

Perturbed density Perturbed scores
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Multi-scale Noise Perturbation

- How much noise to add?

n .
—>

- Multi-scale noise perturbations.

o1 >09 >-++>0[—-1 > 0],



Trading off Data Quality and Estimation Accuracy

Data scores Estimated scores (Red encodes error)
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Joint Scores to Samples

Annealed Langevin Dynamics
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- Samples used as initialization for the next level

- Anneal down the noise level.

- Sample using
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Joint Score Estimation via
Noise Conditional Score Networks
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Training noise conditional score networks

- Which score matching loss?

Sliced score matching?
Denoising score matching?

- Denoising score matching is naturally suitable, since
the goal is to estimate the score of perturbed data
distributions.

- Weighted combination of denoising score matching

losses | L
7 Z A0:)E,, o[l Vxlog go, (x) — s6(x, 03)|5]

i=1

h|~

2

] + const.
2

L
Z Erxpanz~nN 0.0 [[|V l0g ¢, (X | X) — 86(X, 03)||3] + const.
L

z
So(xX + 0,2,0;) + —
g;

x~pd a,Zz~N(0,I) [

hIH



Choosing noise scales

- Key intuition: adjacent
noise scales should have
sufficient overlap to

facilitate transitioning
across noise scales in
annealed Langevin
dynamics.

- A geometric progression
with sufficient length.

g1 >09 >03 >+ +>01-1 > 0],

o1 _ 0 oL

g2 03 O



Choosing the weighting function

- Weighted combination of denoising score matching
losses

2
Z

SQ(X + 0,2, O'i) + —
oF)

1 L
7 D A00) Exppuna~N(0,1) [
=1

|

2

A Ryp — Ry

- How to choose the weighting function:  A(s:) = o7

- Goal: balancing different score matching losses in the
1 L 2 _
Sum 9 EZU’?Exwpdataasz(O:I)I:
=1

zZ
So(X + 0y2,0;) + —
a;

g -

M=

Ex"’pdatazz"‘N(O:I)I: ||0389(X + O—iz‘i O—'f») + Z”g

= ] =

Ex~pdata,z~_/\f(0,1)|: ||€9(X + 02, O-?:) + ZHg] [ 69('7 O-?J) = UiSQ('a Ui) ]
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Training noise conditional score networks

- Sample a mini-batch of datapoints {X1,X2, "+ ,Xn} ~ Ddata
- Sample a mini-batch of noise scale indices

{7;177;2:'” 77%}'\’2/{{1727 7L}

- Sample a mini-batch of Gaussian noise {zi,z,, - ,z,} ~ N(0,1)
- Estimate the weighted mixture of score matching losses

1

n
=) [ |oiy, S0(Xk + 0y, 2k, 04, ) + Zkl|§]
n k=1

- Stochastic gradient descent

- As efficient as training one single non-conditional score-
based model



Using multiple noise levels
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Experiments: Sampling
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po(x)

pdata(x)

nite noise levels

Data distribution

|

Nata di Perturbed distributions

| |

Po(x) Po, (X) Po,(X) Pex) Po,(X) Pos(X) Poe(X)
te[0,T]



Perturbing data with stochastic processes

Perturbed distributions

‘-
«

p(x) pr(x)

dox, =1 (,, E)idE + g(t) dw,

Deterministic drift

WLOG: Toy SDE
dxt = O'(t) th

57



Generation via reverse stochastic processes

Perturbed distributions

58

[V

Po(x)




Score-based generative modeling via SDEs

- Time-dependent score-based model
sg(X,t) =~ Vy log p(x)
- Training:

Eecriio,0) [N Ep, 0 [| Vix log pi (x) — s6 (¢, 1)1 2]]

- Reverse-time SDE

dx = —0?(t)se(x, t)dt + o(t)dw

- Euler-Maruyama (analgous to Euler for ODEs)
XX —0o(t)se(x,))At+0(t) z (z ~N(0,|At] I))
t—t+ At

Song, Sohl-Dickstein, Kingma, Kumar, Ermon, Poole. “Score-Based Generative Modeling
through Stochastic Differential Equations.” ICLR 2021.



Predictor-Corrector sampling methods

- Predictor-Corrector sampling.

Predictor: Numerical SDE solver
Corrector: Score-based MCMC

Prior Perturbed distributions

pr(x) pt(x)

Data

po(x)




