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Recap

 We need a framework to interact with distributions for statistical generative
models.

 Probabilistic generative models

 Deep generative models

 Autoregressive models

 Variational Autoencoders

 Generative adversarial networks

 Energy based models

 Score based models

 Flow Matching
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Ordinary differential equations (ODEs)

 Every ODE is defined by a vector field 𝑢, i.e. a function of
the form:

 i.e. for every time 𝑡 and location 𝑥 we get a vector 𝑢𝑡 𝑥
∈ 𝑅𝑑 specifying a velocity in space

3



Ordinary differential equations (ODEs)

 An ODE imposes a condition on a trajectory: we want a
trajectory 𝑋 that “follows along the lines” of the vector
field 𝑢𝑡, starting at the point 𝑥0. We may formalize such a
trajectory as being the solution to the equation:
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Ordinary differential equations (ODEs)

 We may now ask: if we start at 𝑋0 = 𝑥0 at 𝑡 = 0, where
are we at time 𝑡 (what is 𝑋𝑡)? This question is answered
by a function called the flow, which is a solution to the
ODE:

 vector fields define ODEs whose solutions are flows.
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Flow models

 We can now construct a generative model via an ODE.
Remember that our goal was to convert a simple
distribution 𝑝𝑖𝑛𝑖𝑡 into a complex distribution 𝑝𝑑𝑎𝑡𝑎. The
simulation of an ODE is thus a natural choice for this
transformation. A flow model is described by the ODE:

 where the vector field 𝑢𝑡
𝜃 is a neural network 𝑢𝑡

𝜃 with
parameters 𝜃
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Flow models

 Our goal is to make the endpoint 𝑋1 of the trajectory
have distribution 𝑝𝑑𝑎𝑡𝑎, i.e.

 where 𝜓𝑡
𝜃 describes the flow induced by 𝑢𝑡

𝜃.

 Note however: although it is called flow model, the
neural network parameterizes the vector field, not the
flow.
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Flow models

 In order to compute the flow, we need to simulate the
ODE.

 Following, we summarize the procedure how to sample
from a flow model.
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From ODEs to SDEs

 The idea of an SDE is to extend the deterministic
dynamics of an ODE by adding stochastic dynamics driven
by a Brownian motion
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Flow matching

 Given a vector field 𝑢𝑡
𝜃 that transports the density 𝑝𝑖𝑛𝑖𝑡 to

𝑝𝑑𝑎𝑡𝑎, we train a NN to regress the vector field:

 However, we do not know the target 
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(Conditional) Flow matching

11



(Conditional) Flow matching

 Flow matching for Gaussian conditional probability paths

 The conditional vector field:

 The conditional flow matching loss:
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