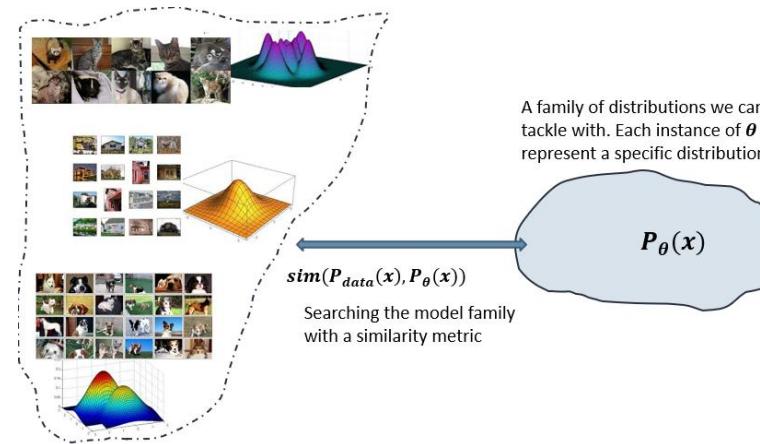


Flow Matching

22-808: Generative models
Sharif University of Technology
Fall 2025

Fatemeh Seyyedsalehi

Recap



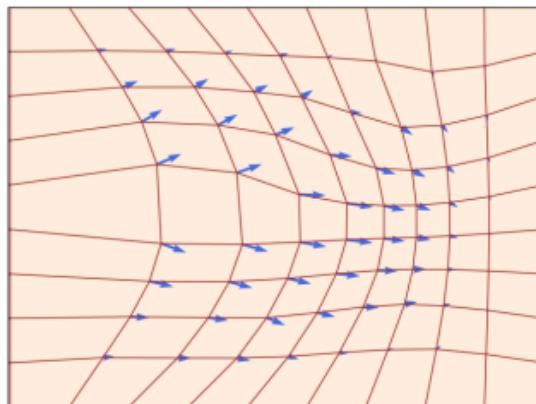
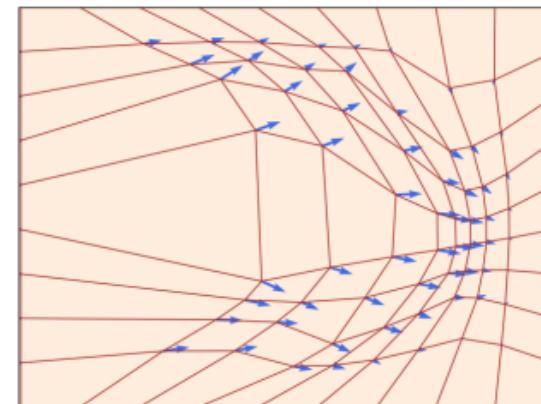
- ▶ We need a framework to interact with distributions for statistical generative models.
 - ▶ Probabilistic generative models
 - ▶ Deep generative models
 - ▶ Autoregressive models
 - ▶ Variational Autoencoders
 - ▶ Generative adversarial networks
 - ▶ Energy based models
 - ▶ Score based models
 - ▶ **Flow Matching**

Ordinary differential equations (ODEs)

- ▶ Every ODE is defined by a vector field u , i.e. a function of the form:

$$u : \mathbb{R}^d \times [0, 1] \rightarrow \mathbb{R}^d, \quad (x, t) \mapsto u_t(x)$$

- ▶ i.e. for every time t and location x we get a vector $u_t(x) \in \mathbb{R}^d$ specifying a velocity in space



Ordinary differential equations (ODEs)

- ▶ An ODE imposes a condition on a trajectory: we want a trajectory X that “follows along the lines” of the vector field u_t , starting at the point x_0 . We may formalize such a trajectory as being the solution to the equation:

$$\frac{d}{dt}X_t = u_t(X_t)$$

$$X_0 = x_0$$

- ▶ ODE
- ▶ initial conditions

Ordinary differential equations (ODEs)

- ▶ We may now ask: if we start at $X_0 = x_0$ at $t = 0$, where are we at time t (what is X_t)? This question is answered by a function called the **flow**, which is a solution to the ODE:

$$\psi : \mathbb{R}^d \times [0, 1] \mapsto \mathbb{R}^d, \quad (x_0, t) \mapsto \psi_t(x_0)$$

$$\frac{d}{dt} \psi_t(x_0) = u_t(\psi_t(x_0))$$

$$\psi_0(x_0) = x_0$$

- ▶ flow ODE
- ▶ flow initial conditions

- ▶ **vector fields define ODEs whose solutions are flows.**

Flow models

- ▶ We can now construct a generative model via an ODE. Remember that our goal was to convert a simple distribution p_{init} into a complex distribution p_{data} . The simulation of an ODE is thus a natural choice for this transformation. A **flow model** is described by the ODE:

$$X_0 \sim p_{init}$$

$$\frac{d}{dt}X_t = u_t^\theta(X_t)$$

- ▶ random initialization
- ▶ ODE

- ▶ where the vector field u_t^θ is a neural network u_t^θ with parameters θ

a continuous function $u_t^\theta : \mathbb{R}^d \times [0, 1] \rightarrow \mathbb{R}^d$

Flow models

- ▶ Our goal is to make the endpoint X_1 of the trajectory have distribution p_{data} , i.e.

$$X_1 \sim p_{data} \iff \psi_1^\theta(X_0) \sim p_{data}$$

- ▶ where ψ_t^θ describes the flow induced by u_t^θ .
- ▶ Note however: although it is called flow model, the neural network parameterizes the vector field, not the flow.

Flow models

- ▶ In order to compute the flow, we need to simulate the ODE.
- ▶ Following, we summarize the procedure how to sample from a flow model.

Algorithm 1 Sampling from a Flow Model with Euler method

Require: Neural network vector field u_t^θ , number of steps n

- 1: Set $t = 0$
- 2: Set step size $h = \frac{1}{n}$
- 3: Draw a sample $X_0 \sim p_{\text{init}}$
- 4: **for** $i = 1, \dots, n$ **do**
- 5: $X_{t+h} = X_t + h u_t^\theta(X_t)$
- 6: Update $t \leftarrow t + h$
- 7: **end for**
- 8: **return** X_1

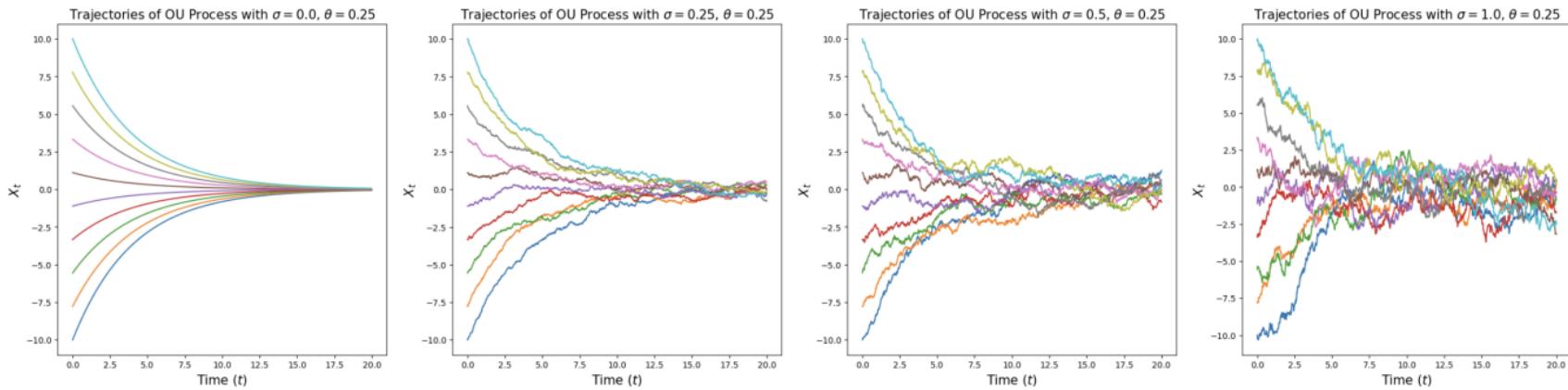
From ODEs to SDEs

- ▶ The idea of an SDE is to extend the deterministic dynamics of an ODE by adding stochastic dynamics driven by a Brownian motion

$$dX_t = u_t(X_t)dt + \sigma_t dW_t$$

$$X_0 = x_0$$

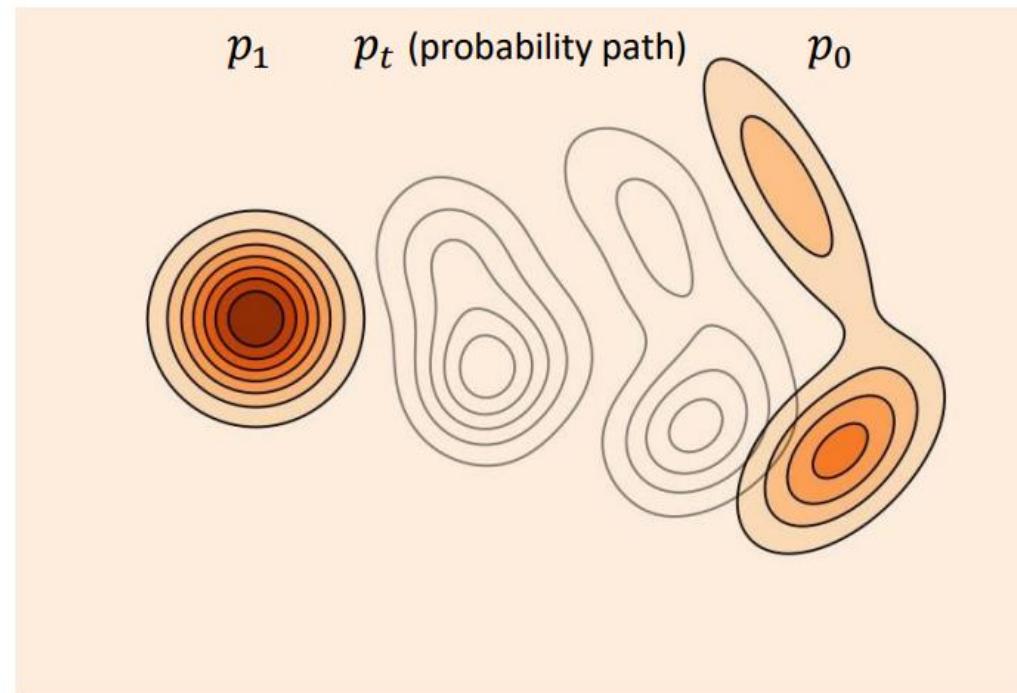
- ▶ SDE
- ▶ initial condition



Flow matching

- Given a vector field u_t^θ that transports the density p_{init} to p_{data} , we train a NN to regress the vector field:
- However, we do not know the target 😞

$$\mathbb{E}_{t \sim \text{Unif}, x \sim p_t} [\|u_t^\theta(x) - u_t^{\text{target}}(x)\|^2]$$



(Conditional) Flow matching

$$\mathbb{E}_{t \sim \text{Unif}, z \sim p_{\text{data}}, x \sim p_t(\cdot|z)} [\|u_t^\theta(x) - u_t^{\text{target}}(x|z)\|^2]$$

Denoising score matching

$$\begin{aligned} & \mathbb{E}_{\tilde{x} \sim p(\tilde{x}|x), x \sim p(x)} \|s_\theta(\tilde{x}) - \nabla_{\tilde{x}} \log p(\tilde{x})\|^2 \\ &= \mathbb{E}_{\tilde{x} \sim p(\tilde{x}|x), x \sim p(x)} \|s_\theta(\tilde{x}) - \nabla_{\tilde{x}} \log p(\tilde{x}|\textcolor{red}{x})\|^2 + C \end{aligned}$$

(Conditional) Flow matching

- ▶ Flow matching for Gaussian conditional probability paths

$$\epsilon \sim \mathcal{N}(0, I_d) \quad \Rightarrow \quad x_t = \alpha_t z + \beta_t \epsilon \sim \mathcal{N}(\alpha_t z, \beta_t^2 I_d) = p_t(\cdot | z).$$

- ▶ The conditional vector field:

$$u_t^{\text{target}}(x|z) = \left(\dot{\alpha}_t - \frac{\dot{\beta}_t}{\beta_t} \alpha_t \right) z + \frac{\dot{\beta}_t}{\beta_t} x,$$

- ▶ The conditional flow matching loss:

$$\begin{aligned} \mathcal{L}_{\text{CFM}}(\theta) &= \mathbb{E}_{t \sim \text{Unif}, z \sim p_{\text{data}}, x \sim \mathcal{N}(\alpha_t z, \beta_t^2 I_d)} [\|u_t^\theta(x) - \left(\dot{\alpha}_t - \frac{\dot{\beta}_t}{\beta_t} \alpha_t \right) z - \frac{\dot{\beta}_t}{\beta_t} x\|^2] \\ &\stackrel{(i)}{=} \mathbb{E}_{t \sim \text{Unif}, z \sim p_{\text{data}}, \epsilon \sim \mathcal{N}(0, I_d)} [\|u_t^\theta(\alpha_t z + \beta_t \epsilon) - (\dot{\alpha}_t z + \dot{\beta}_t \epsilon)\|^2] \end{aligned}$$