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Probabilistic generative models

Deep generative models
Autoregressive models
Variational Autoencoders
Generative adversarial networks
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Ordinary differential equations (ODEs)

» Every ODE is defined by a vector field u, i.e. a function of
the form:

w:R?x [0,1] = RY,  (z,t) = wy(x)

» i.e. for every time t and location x we get a vector u,(x)
€ RY specifying a velocity in space




Ordinary differential equations (ODEs)

» An ODE imposes a condition on a trajectory: we want a
trajectory X that “follows along the lines” of the vector
field u;, starting at the point x,. We may formalize such a
trajectory as being the solution to the equation:

|
éXt = ’H.-t(Xt) > ODE

Xo = 2o » initial conditions



Ordinary differential equations (ODEs)

» We may now ask: if we start at Xy = x5 at t = 0, where
are we at time t (what is X;)? This question is answered

by a function called the flow, which is a solution to the
ODE:

¥R [0,1] =R, (20, t) = i (o)
d
E’ﬂ"-"f’t(-"f?{l) = us(Ye(x0)) » flow ODE

Yo(zo) = x0 » flow initial conditions

» vector fields define ODEs whose solutions are flows.



Flow models

» We can now construct a generative model via an ODE.
Remember that our goal was to convert a simple
distribution p;;,;; into a complex distribution p4,4¢,. The
simulation of an ODE is thus a natural choice for this
transformation. A flow model is described by the ODE:

X0 ~ Dinit » random initialization
d

Xt = ud (Xy) » ODE

» where the vector field u? is a neural network u? with
parameters 0

a continuous function uf : R? x [0, 1] — R4



Flow models

» Our goal is to make the endpoint X; of the trajectory
have distribution pg4¢4, i-€.

.0
Xl ~ Pdata ~ (28] (XU) ~ Pdata

» where ¢ describes the flow induced by u?.

» Note however: although it is called flow model, the
neural network parameterizes the vector field, not the
flow.



Flow models

» In order to compute the flow, we need to simulate the
ODE.

» Following, we summarize the procedure how to sample
from a flow model.

Algorithm 1 Sampling from a Flow Model with Euler method

Require: Neural network vector field u{, number of steps n
: SEt- t=20

. Set, step size h = ?l;,
. Draw a sample X ~ Dinit
. fori=1,...,ndo

3] Xt—l—h = X; + hﬂ-tg(Xt)
6: Updatet <« t+h

7: end for

8 return X,
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From ODEs to SDEs

» The idea of an SDE is to extend the deterministic

dynamics of an ODE by adding stochastic dynamics driven
by a Brownian motion

dXt = TLt(Xt)dt -+ Jtdlfvt > SDE

Xy = xo » initial condition

Trajectories of OU Process with 0= 0.0, §=0.25 _Trajectories of OU Process with 0= 0.25, 8=0.25 Tr

ajectories of OU Process with =10.5,6=0.25

_ Trajectories of OU Process with 0=1.0,6=0.25




Flow matching

» Given a vector field uf that transports the density p;,;; to
Daata, WE train a NN to regress the vector field:

» However, we do not know the target ®

P1 D¢ (probability path) Po

Ethliif,prt [H“‘f (z) — “‘Eargﬂ ()| 2]

10



(Conditional) Flow matching

0 target
Ethﬂif,zmpdﬂtmmmpt(-|z) [||'Ur¢ (z) — '“rtarge ($|z)“2]
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(Conditional) Flow matching

» Flow matching for Gaussian conditional probability paths

e~N(0,I) = z=0az+ Pre ~N(asz, f214) = pe(-|2).

» The conditional vector field:

u, % (z)2) = (dt - %at) z+ 'i?:r:,
B¢ B

» The conditional flow matching loss:
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Lcorm(0) = Ethnif.zn-pdum..rm,-"\."(mz._:'iffd][H“’t (z) - (*’lt - Eﬂ't) Z— Eﬂ?“z]
(2) , : ; :

= Etmunif._;mpdm._f.m,.x-'{ﬂ._fd}[Hﬂf(ﬂ'ti + .iitf) - (ﬂtz + ﬁtf) ||2]
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