Score-Based Diffusion Models

LECTURE 16

CS236: Deep Generative Models
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Plan for today

1. Recap on score-based models

2. Diffusion models as score-based models

3. Diffusion models as (hierarchical) VAEs

4. Diffusion models as normalizing flow models
5. Efficient sampling strategies

6. Controllable generation

Stanford University



Score-based models

* A model that represents the score function

« Score estimation: training the score-based model from datapoints

* Score matching
1

§Ex~Pdata[||vx logpdata(x) - Sg(X)Hg]
1 1
=5 Brpaa| 5 180(0) [ + tr(Vso(x) | + const.

* Not scalable for deep score-based models and high dimensional data
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Denoising score matching

~ 1 3 )
R 4o (X | x) 5 Bx~panalll86(%) — Vxlog - (%) |12]
Perturbati 1 ~ )
dist:buutrioi/fenrnel it :iEchlata(X),iwqg(i\x)[||39(X) — Vi log g, (x| X)||§] + const.
X~ pdata(x) X ~ qo_(f() 1E 202
b e = o5 X~ paatarz~ —~ t.
woseprutes = Bopoion)| S0+ 72) + 2| |+ cons
* Pros:

 Much more scalable than score matching
* Reduces score estimation to a denoising task
« Con: estimates score of noise-perturbed data

Sy (X) ~ Vi log 4o (X) # Vx log Pdata (X)
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Score-based generative modeling
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Data samples Scores New samples

{x1,X2, "+ ,Xn} ~ Pdata(X) S9(X) ~ Vi log pgata(X)
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Joint Score Estimation via
Noise Conditional Score Networks
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Using multiple noise levels

pdx) < gl < pg 6x)

\.)‘:\\\A-b.
':\‘ - e

N :
A o~
Noise Conditional e e W R v A
olse onaitiona PR L A‘n.-s a‘téhlng IOSS. RS TR AN § WA R
Score Model Sg(X 0-2) Se(x 0-3)
’ Stanford Univ versity



Experiments: Sampling
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Sampling as lterative Denoising

Inverse process: iteratively add Gaussian noise

q (%)
(%)
Langevin Langevin  Langevin Start
Xo — — X} oo e X1 — X7 from
pure
noise

Iteratively remove noise
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lterative noising process

{ \ /\ Progressively add noise

Noise perturbed densities are obtained by adding Gaussian noise

q(X¢|x-1) = N(Xté V1= Bx¢—1, BI)

T

Defines a joint distribution  ¢(X1.7[x0) = HQ(Xt|Xt—1)
t=1 Stanford University




Multistep transition

Multi-step transitions are also Gaussian and can be computed in closed form
t

q(x¢[x0) = N(x¢: vauxg, (1 — o)) Ot = Hl(l — Bs)
5=

1) Same as noise-perturbed data distributions in score-based models

2) Efficientsamplingatanyt

Stanford University



Diffusion perspective

Data distribution

RYAAYA

|

Nata distribution

qo(x)

V' V

Pdata (X)

o(x)

Perturbed distribution

Perturbed distribution

Perturbed distribution

qr(x)
m(x)
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Iterative Denoising

|deal sampling process:

1. Sample Xx;om 7(xie.from pure noise

2. Iteratively sample from the true denoising distribution  q(x¢—1|x¢)
Issue: Exact denoising distribution is unknown!

Solution: Learn a variational approximation
Stanford University




Iterative Denoising

Sample X7 om p(XT) = N(XT; O,I) = T

Iteratively sample from po(xXi—1|xt) = N(Xt—l§ NG(Xh t)a JtQI)
T

Joint distribution:  pp(xo7) = p(x7) | [ po(xe—1]x¢)
t—1

Stanford University



Diffusion model as a hlerarchlcal VAE

Encoder (fixed):  ¢(X1.7(X0) = Hq (x¢|x¢-1)

e — Xy Prior
over

T
Decoder (learnable):  py(xo1) = p(x7) | | po(xi—1x¢) latents

Stanford University



From VAE to Hierarchical VAE
Basic VAE:

A mixture of an infinite number of Gaussians: Z
Q@ z~ N(0,/)
Q p(x|z) =N (1e(z), Xo(z)) where 119,29 are neural networks

ELBO training:

Eq¢(z|x) [|Og P(Z} X, 9) — log q:;fa(z‘x))]

Stanford University



From VAE to Hierarchical VAE
Hierachical VAE (decoder): p(x, z4, z,) = p(2,) p(z4]| z,) p(Xx | z4)

y4
1. Sample z, from a simple prior N(0, 1) ?
2. Sample z, from a decoder p(z, | z,)
3. Sample x from a decoder p(x | z4) .
1

Encoder: q(z4 z, | X)

P(X, Z4, Zz))]

ELBO training:  Eq(z, 2, | x) [“’g (q<z1, Z, | X)

Stanford University



Training a denoising diffusion probabilistic model

Encoder (g) has no
learnable parameters!

T
Encoder (fixed): q(x1.7|x0) = HQ(Xt|Xt—1)

T
Decoder: po(xo.1) = p(xp) | [ polxe—1lx¢)

X9 <+— t=1 — X7

ELBO loss (negative ELBO averaged over data distribution):

Eq(xy) [— 108 po(%0)] < Eqxg)q(xrlx0) [— log

po(Xo:7) o
Q(X1:T|X0)] —h



Diffusion models as score-based models
The ELBO objective is

PH(X[}:T) ]
Eqxo) [— log po(x0)| < Ejixo)atxirixg) | — 10 =: L
J(x0) [— 108 Po(%0)] < Eqxo)g(x1r ){ 8 (17 %0)

Decoder parameterization: pg(X;—1|Xt) = N (X4_1; pg(x¢, 1), O’EI)

(x4, 1) 1 B (x,, 1) Up to scaling, predict
o\ b= Xt — — €\ X¢ noise that was added
R T TR )

I — oy and subtract it
— — 2
L = Eyrq(xp) t~U{1, T} e~N(0,1) [MHE —eg(vVar xo+ /1 —at € 1) ]

ELBO loss reduces to denoising score matching!

Stanford University



Training and inference

Algorithm 1 Training Algorithm 2 Sampling
;: repeat (x0) 1: xr ~ N(0,I)
- X0~ qiXo 2: fort="T,...,1d

3: t~ Uniform({1,...,T}) 3. oer N(6 1) ¢

4: e~ N(0,1) ' B =

5: Take gradient descent step on 4 X1 =7 (xt — /i, €# (xtut)) t+oiz
Vo ||e —eo(Wauxo + V1 — aye t)||2 5: end for

6: until converged 6: return xo
Denoising score lteratively Sample from decoders  po(xi—1|xt)
matching training (Annealead Langevin Dynamics)

1 L
17 Y. Ex~pdata,z~N(0,I)[ |€o(x + 032, 03) + Z||§] | €o(+, 0i) 1= 0is(, 03) |
i=1 Stanford University



Architecture for the denoiser

Unet architecture used in practice

---» €g(x¢,1)

e m——————

T

Time Representatlon 1' I

Fully-connected
Layers

1
1
1
1
1
1
| .

Same as the noise-condtional score network (t represents the time index
or equivalently the noise level)

Stanford University



Infinite noise levels

Data distribution

—

_—
—

K

Po(x)

) | |

Nata di Perturbed distributions

po(x)

Pdata (X)

\/ \/

po(x) Po,(X) Pa,(X) ﬁ‘éiﬁ) Do, (X) Po. (X) Do, (X)
te[0,T] Stanford University




Perturbing data with stochastic processes

Perturbed distributions

‘-
(

pe(x) pr(x)

dXt =i_.f (Xt: t)idt + g(t}l thE
P N

Deterministic drift Infinitesimal noise



Generation via reverse stochastic processes

Perturbed distributions

[V

pr(x) pe(x) Po(x)

Infinitesimal noise in
the reverse time
direction

24 Score function!



Score-based generative modeling via SDEs

« Time-dependent score-based model

sg(x,t) ~ Vxlogps(x)
« Training:

Ercriio.0) N OEp, 0 [| Vi log p (x) — s6(x, 1)1 2]]

« Reverse-time SDE

dx = —0?(t)se(x, t)dt + o(t)dw

« Euler-Maruyama (analgous to Euler for ODESs)
X+ x—o(t)?se(x,t)At +o(t) z (2 ~N(0,|At] I))
t—t+ At

Song, Sohl-Dickstein, Kingma, Kumar, Ermon, Poole. “Score-Based Generative Modeling . .
through Stochastic Differential Equations.” ICLR 2021. Stanford University




Predictor-Corrector sampling methods

* Predictor-Corrector sampling.
* Predictor: Numerical SDE solver
 Corrector: Score-based MCMC

Prior Perturbed distributions Data

S

pr(x) Po(x)

Stanford University




Results on predictor-corrector sampling

Model FID| ISt
Conditional

BigGAN (Brock et al., 2018) 14.73 9.22
StyleGAN2-ADA (Karras et al., 2020a) 2.42 10.14
Unconditional

StyleGAN2-ADA (Karras et al., 2020a) 2.92 9.83
NCSN (Song & Ermon, 2019) 2532 8.87 + .12
NCSNv2 (Song & Ermon, 2020) 10.87 8.40 + .07
DDPM (Ho et al., 2020) 3.17 9.46 + .11
DDPM++ 2.78 9.64
DDPM++ cont. (VP) 2.55 9.58
DDPM++ cont. (sub-VP) 2.61 9.56
DDPM-++ cont. (deep, VP) 241 9.68
DDPM++ cont. (deep, sub-VP) 2.41 9.57
NCSN++ 2.45 9.73
NCSN++ cont. (VE) 2.38 9.83
NCSN++ cont. (deep, VE) 2.20 9.89

Song, Sohl-Dickstein, Kingma, Kumar, Ermon, Poole. “Score-Based Generative Modeling . .
through Stochastic Differential Equations.” ICLR 2021. Stanford University




High-Fidelity Generation for 1024x1024 Images

Stanford University



Converting the SDE to an ODE

Perturbed distributions

N\

| OE trajectories
—— SDE trajectories

Po(x) p(x) pr(x)

SDE Ordinary differential equation (ODE)

dXt o ]- Mo y
a = oo Tlentd

dxt =0 (t) th
Score function
~ 86(X, 1)
Stanford University



Converting the SDE to an ODE

Perturbed distributions

O

—— SDE trajectories

Po(x) p(x) pr(x)

We can think of this as a (continuous time, infinite depth) normalizing flow
1. Unique ODE solution - Invertible mapping
2. To invert, solve ODE backwards from T to O

Stanford University



I Evaluating likelihoods with ODEs (flow model)

Probability distributions

() S0(x, 1) > ODE o) @
Computing the probability density function (change of variables formula)
R A R
log pg(x9) = log w(x1) — §:J io(t)? -trace(vxsep(x t))'dt
O
=== Caompidiskle in
ODE solver oolgstimistidime

Stanford University



Competitive likelihoods on test data

Negative log-probability | (bits/dim)

PixelSNAIL [chen et al. 2018] 2.85 3.80
Delta-VAE [Razavi et al. 2019] 2.83 3.77
Sparse Transformer [Child et al. 2019] 2.80 —

Challenges years of dominance of

autoregressive models and VAEs

Stanford University



Accelerated sampling

Probability distributjons

- ODE trajectories

7(x) sg(x,t) > ODE po(x)

* Numerical methods + ODE formulation to accelerate sampling
 DDIM [Song and Ermon, 2021]:
» Coarsely discretize the time axis, take big steps

« Corresponds to exponential integrator (semi-linear ODE) [Lu et al,
2022; Zhang and Chen, 2022]

« 10x-50x speedups, comparable sample quality Stanford University




Parallel ODE solving

0 25 50 75 100 125 150 175 200

Parallel Sampling (ParaDDPM)

Sequential Sampling (DDI'M)

0 25 50 7‘5 100 125 150 175 200

/// -

batch window batch window batch window

(a) Compute the drift of xf:t 4 0N (b) Update the values to xf:ﬂp using (c) Determine how far to slide the

a batch window of size p = 4, in  the cumulative drift of pointsin the ~ Window forward, based on the error .
: l|lxk*l — xk|12 versity
parallel window il

i



student S student

-
Distillatio/n/\ T
" JovE recores

Probability distributjons

7(x) sg(x,t) > ODE po(x)

Progressive distillation [Salimans, Ho 2022]

 DDIM sampler as a teacher model

« Student model trained to do in 1 step what DDIM achieves in 2 steps
» Applied recursively to drastically reduce the number of steps required

Stanford University



On distillation of guided diffusion models

(a) 2 denoising steps (b) 4 denoising steps (c) 8 denoising steps

Meng, Rombach, Gao, Kingma, Ermon, Ho, Salimans “On distillation of guided diffusion models.” 2023.

Stanford University



Latent diffusion model

Latent Space Forward Diffusion

Encoder P(Zo) > p(z1)

Datax

®
—-—"’_'/‘_ \
Rl e =—0=0 \

_—
=1

Reconst, -t = : —
p(x|2o) Decoder KL(q(zo|x)||p(zo))  Latent Space Generative Denoising
VAE mapping data to lower Diffusion model prior over
dimensional space the latent space of the
1. Faster autoencoder
2. Can be applied to any data

type (e.g. discrete)

Stanford University



Stable diffusion text2image model

Latent Space Forward Diffusion

Encoder P(Zo) > p(z1)

Datax

®
—-—"’_'/‘_ \
Rl e =—0=0 \

_—— @
=1

Reconst, s E _ —
p(x|z0) Decoder KL(q(zo|x)||p(zo))  Latent Space Generative Denoising
VAE mapping data to lower Diffusion model prior over the
dimensional space latent space of the autoencoder
1. Pre-trained, focus on 2. Trained in the second stage,
reconstruction (autoencoder) keeping initial autoencoder fixed

Large scale, open source model, widely adopted Stanford University



Conditional generation

User input:

An astronaut riding a horse

Stanford University



Conditional generation

Let (x,y) denote (image,caption) pairs
Training a conditional generative model involves learning p(x | y)

Train score model for the image x conditional on caption y
: 2
B (xy)~paaia () Benn 0 Beerao,r) [l€o(Xe, 15y) — €5

Need a suitable architecture

-» €g(xs, 1Y) Z_

Stantord University



Control the generation process

Bayes’ rule:
B ?

|

|

1

|

(7 N 1
| P(Y)
p(x) !

: Bayes’ rule for score functions:
Forwardmodel - p(y | X)  Vilogp(x | ) =Vxlogp(x)
Control signal Y ="“dog” :

1

|

|

1

|
F 7 N1 '
! p(X | y) : : Plug in different forward models for

the same score model

Inverse distribution



Stroke to image synthesis
Stroke Painting to Image

Stroke paintings Sampled images
y x|y

[Meng, He, Song, Song, Wu, Zhu, Ermon. ICLR 2022]

Stanford University



Language-guided image generation

y x|y |

(Prompt)
Treehouse in the S T T
style of Studio o bl O e el 8

Ghibli animation

P - e i

[ Work by @danielrussruss ] Stanford University



Controllable generation: Text-guided generation

An abstract painting of computer A painting of the starry night by van
science:

https://colab.research.google.com/drive/1FuOobQOmMDJuG7rGsMW{Qa883A9r4HXE O?usp=sharing

Stanford University


https://colab.research.google.com/drive/1FuOobQOmDJuG7rGsMWfQa883A9r4HxEO?usp=sharing

Classifier-free guidance
el | X_)Q

Bayes’ rule for score functions:

Vxlogp(x | v) =V logp(x)

/ + Vi log p(y | x)
Conditional score _&'ﬁéé:é&j 0
= Vxlogp(x) + Vi log p(y | x)
/ ~
Unconditional score Classifier obtained as the difference

Stanford University



Classifier-free guidance

Train both a conditional and an unconditional score model (by randomly
dropping the caption during training)

Combine the two models as follows

(14 w)Vy, log p(y]xt) + Vi, log p(xt) = (1 +w)(Vy, log p(x:]y) — Vi, log p(x;)) + Vi, log p(x;)

= (1 4+ w)Vy, log p(x;y) — wVy, log p(x;)

w is the classifier-guidance strength

Stanford University



Effect of classifier guidance

Increased classifier guidance strength (w)

Stanford University



Summary

Discrete time diffusion model as a hierarchical VAE

« Connections with score-based models (ELBO equivalence to score
matching)

Continuous time diffusion models

« SDE perspective: VAE with an infinite number of latent variables
« ODE perspective: normalizing flow (exact likelihoods!)
Accelerated sampling

« Advanced numerical methods for solving ODE/SDEs
 Distillation

Controllable generation

« Classifier guidance

« Classifier-free guidance

Stanford University



