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Few-shot Learning with LLMs

• Definition: fine-tune the LLM on the training data 
using… 
– a standard supervised objective
– backpropagation to compute gradients
– your favorite optimizer (e.g. Adam) 

• Pro: fits into the standard ML recipe
• Pro: still works if N is large
• Con: backpropagation requires ~3x the memory 

and computation time as the forward 
computation

• Con: you might not have access to the model 
weights at all (e.g. because the model is 
proprietary)

Option B: In-context learning

• Definition: 
1. feed training examples to the LLM as a 

prompt
2. allow the LLM to infer patterns in the training 

examples during inference (i.e. decoding)
3. take the output of the LLM following the 

prompt as its prediction
• Pro: no backpropagation required and only one 

pass through the training data
• Pro: does not require model weights, only API 

access
• Con: for Transformers, a prompt (of length N) 

requires O(N2) time/space 
• Con: the prompt might not fit into max context of 

a Transformer LM 
7

Option A: Supervised fine-tuning

Suppose you have…
• a dataset D = {(xi, yi)}i=1

N and N is rather small (i.e. few-shot setting)
• a very large (billions of parameters) pre-trained language model
There are two ways to “learn”
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Option A: Supervised fine-tuning

Suppose you have…
• a dataset D = {(xi, yi)}i=1

N and N is rather small (i.e. few-shot setting)
• a very large (billions of parameters) pre-trained language model
There are two ways to “learn”

In this section, we consider the 
question: 

How can we do supervised fine-
tuning of a very large 
foundation model more 
efficiently?



Fine-Tuning vs. In-Context Learning
• Why would we ever bother with fine-tuning if it’s so inefficient?
• Because, even for very large LMs, fine-tuning often beats in-context learning
• In a fair comparison of fine-tuning (FT) and in-context learning (ICL), we find that FT 

outperforms ICL for most model sizes

9
Figure from http://arxiv.org/abs/2106.09685 

Question:
Why did fine-tuning of GPT-3 do so much 
better on these two tasks than few-shot 
learning?

Answer:
• Few-shot details: GPT-3’s context length is 

only 2048 tokens. So the MNLI-m setting 
above only uses 6 few-shot examples in 
total.

• Fine-tuned details: MNLI-m has 393,000 
training examples and GPT-3 is fine-tuned 
for 2 epochs.
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Figure from https://aclanthology.org/2023.findings-acl.779.pdf
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Figure from https://aclanthology.org/2023.findings-acl.779.pdf

At least this was the 
general wisdom in 2023.

We might have a 
different story to tell 

since 2024.
(See Lecture 19)



Parameter Efficient Fine-Tuning
• Goal: perform fine-tuning of fewer parameters, but achieve 

performance on a downstream task that is comparable to fine-
tuning of all parameters

• Various approaches:
– Subset: Pick a subset of the parameters and fine-tune only those (e.g. 

only the top K layers of a K+L layer deep neural network)
– Adapters: add additional layers that have few parameters and tune only 

the parameters of those layers, keeping all others fixed
– Prefix Tuning: for a Transformer LM, pretend as if there exist many 

tokens that came before your sequence and tune the keys/values 
corresponding to those tokens

– LoRA: learn a small delta for the each of the parameter matrices with 
the delta chosen to be low rank
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Fine-Tuning the Top Layers Only
• Simple baseline for PEFT:
– keep all parameters fixed 

except for the top K layers
– gradients only need to flow 

through K layers instead of 
K+L total layers

– reduced memory usage b/c 
we don’t need to store the 
adjoints (gradient of the loss 
with respect to each 
parameter) for the full 
computation graph

• Can easily be applied to 
most deep neural networks
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ℓ1(·,·) = cross-entropy(ŷ, y)

y = one-hot(positive)

stop gradient here
s.t. error does not

backprop to lower
layers
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ŷ = p(y|h1) 

ℓ1(·,·) = cross-entropy(ŷ, y)

y = one-hot(positive)

stop gradient here
s.t. error does not

backprop to lower
layers

Question:
Why does this work at all?
Shouldn’t it do a poor job fitting the 
underlying trends in our data?

Answer:



ADAPTERS
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Decoder-only Transformer
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Each layer of a Transformer LM 
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Each hidden vector looks back at 
the hidden vectors of the current 
and previous timesteps in the 
previous layer.

The language model part is just like 
an RNN-LM.

Transformer layer

Transformer layer

Transformer layer



Encoder-only Transformer
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…

Each layer of an encoder-only 
Transformer consists of several 
sublayers:
1. non-causal attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Each hidden vector looks at the the 
hidden vectors of all timesteps in 
the previous layer.

The distribution over words is used 
for masked language model (MLM) 
pre-training (cf. BERT)

Transformer layer

Transformer layer

Transformer layer

x1 x2 x3 x4

h2

BERT popularized this 
encoder-only 
Transformer 
architecture and style 
of pretraining p(w1|h2) 

ℓ1(·,·)

MLM Pretraining:
• Rather than trying 

to predict the next 
word from the 
previous ones…

• …mask out a word 
(or a few words) 
and predict the 
missing words from 
the remaining ones

+J = log p(w1 | w2 , w3)

The



Adapters Module
• An adapter layer is simply a feed-

forward neural network with one
hidden layer, and a residual
connection

• For input dimension, d, the
adapter layer also has output
dimension d, but bottlenecks to a
lower dimension m in the middle
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Figure from https://arxiv.org/pdf/1902.00751
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d

r

Adapters for Transformer
• In practice, r is chosen s.t. 

r << d and the adapter 
layers contain only 0.5% – 
8% of the total parameters

• When added to a deep 
neural network (e.g. 
Transformer) all the other 
parameters of the 
pretrained model are kept 
fixed, and only the 
adapter layer parameters 
are fine-tuned

• Interesting: it works even 
though the grey modules 
are kept fixed!
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Adapter Results
• Pretrained Model: BERT-

Large
• Baseline Method: fine-

tune only the top K layers
of BERT-Large

• Adapters achieve nearly
the performance (i.e. 0%
delta) of full fine-tuning
but with substantially
fewer parameters

• Sometimes adapters even
outperform full fine-tuning

21
Figure from https://arxiv.org/pdf/1902.00751



PROMPT TUNING & PREFIX TUNING
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Prefix Tuning

For a Transformer, we will say the 
activation of token i in some layer/head 
is given by its key/value vectors:

hi = [ki
 T, vi

 T]T

1. inject (dummy) prefix
tokens, indexed by Pidx,
before the real tokens

2. represent i’th prefix token’s
activation by trainable
parameters:

hi = Pθ[i, :]
3. for each i let

 Pθ[i, :] = MLP(Qθ[i, :]) 
because having Qθ of lower 
dimension than Pθ improves 
stability during training

4. during training, keep all
Transformer parameters
fixed, except for θ 26

Figure from http://arxiv.org/abs/2101.00190 



Prefix Tuning

Also works for encoder-decoder 
Transformer models, but we inject 
prefix tokens before both the source 
tokens x and the target tokens y

27
Figure from http://arxiv.org/abs/2101.00190 

1. inject (dummy) prefix
tokens, indexed by Pidx,
before the real tokens

2. represent i’th prefix token’s
activation by trainable
parameters:

hi = Pθ[i, :]
3. for each i let

 Pθ[i, :] = MLP(Qθ[i, :]) 
because having Qθ of lower 
dimension than Pθ improves 
stability during training

4. during training, keep all
Transformer parameters
fixed, except for θ



Prefix Tuning

28
Figure inspired by He et al. (2022) https://arxiv.org/pdf/2110.04366

m
ul

ti-
he

ad
ed

add & layer norm

WkWq Wv

X

Q K V

⨉ ⨉ ⨉

attention

feed-forward neural net

add & layer norm

Pk PV

tr
an

sf
or

m
er

X’

Figure from http://arxiv.org/abs/2101.00190 



LOW-RANK ADAPTATION (LORA)
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How large are LLMs?
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Comparison of some recent large language models (LLMs)

Recall…

Model Creators Year of 
release

Training Data (# 
tokens)

Model Size (# 
parameters)

GPT-2 OpenAI 2019 ~10 billion (40Gb) 1.5 billion

GPT-3 
(cf. ChatGPT)

OpenAI 2020 300 billion 175 billion

PaLM Google 2022 780 billion 540 billion

Chinchilla DeepMind 2022 1.4 trillion 70 billion

LaMDA
(cf. Bard)

Google 2022 1.56 trillion 137 billion

LLaMA Meta 2023 1.4 trillion 65 billion

LLaMA-2 Meta 2023 2 trillion 70 billion

GPT-4 OpenAI 2023 ? ? (1.76 trillion)

Gemini (Ultra) Google 2023 ? ? (1.5 trillion)

LLaMA-3 Meta 2024 15 trillion 405 billion



How large are the linear layers in a Transformer?

32
Figure from https://arxiv.org/pdf/2005.14165.pdf 

Size of linear layer in GPT-3: 
12k * 12k

https://arxiv.org/pdf/2005.14165.pdf


Fine-Tuning LLMs without Regularization

33

Question:
Why don’t LLMs 
overfit when we fine-
tune them without 
regularization?

Hypothesis:
They are intrinsically 
low dimensional



Intrinsic Dimensionality

Motivation
• Maybe the number of parameters in a 

model is not a great measure of how 
many degrees of freedom are needed 
to successfully learn some problem

• How could we measure the number 
of degrees of freedom you really 
need?

Intrinsic Dimension
Definition from Li et al. (2018):
• Learn a neural network with D 

parameters in a random lower 
dimensional subspace, d

• Then repeat, gradually increasing the 
dimensionality, d

• Let the intrinsic dimension be the 
value of d when good solutions 
(above 90% threshold of full 
parameterization) start to appear

34

For MNIST digit recognition, original 
neural network has D=199,210 
parameters but the intrinsic 

dimension is only d=750 

Figure from http://arxiv.org/abs/1804.08838 



Intrinsic Dimensionality
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How do we learn in a low dimensional subspace?

Figure from http://arxiv.org/abs/1804.08838 

x

z

W1

MLP

y

W2

MLP

θ(D) = concat(flatten(W1), flatten(W2))



Intrinsic Dimensionality
• Using similar techniques, 

Aghajanyan et al. (2020) measure 
the intrinsic dimension of LLMs

• Empirical results suggest that pre-
training finds parameters that 
have low intrinsic dimensionality

• Number of parameters:
– BERT-Base: 110 million
– BERT-Large: 345 million

36
Figure from http://arxiv.org/abs/1804.08838 



LoRA
• Motivation #1:

“We take inspiration from Li et al. (2018a); Aghajanyan et al. (2020) which show that the
learned over-parametrized models in fact reside on a low intrinsic dimension.”

• Motivation #2:
Directly optimizing the prompt, as in prefix tuning, leads to non-monotonic changes in
performance as the number of parameters increases (we want more parameters to
mean better performance!)

• Motivation #3:
Adapters and related methods introduce inference latency at test time that is non-trivial!
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LoRA
Key Idea
• Keep the original pretrained

parameters W0 fixed during
fine-tuning

• Learn an additive
modification to those
parameters ΔW

• Define ΔW via a low rank
decomposition:

where BA has rank r, which is 
much less than the input 
dimension k or the output 
dimension d

38
Figure inspired by He et al. (2022)
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LoRA
Initialization
• We initialize the trainable 

parameters:

• This ensures that, at the start 
of fine tuning, the 
parameters have their 
pretrained values:

39
Figure inspired by He et al. (2022)
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LoRAHot Swapping Parameters
• W0 and BA have the same

dimension, so we can ”swap” 
the LoRA parameters in and 
out of a Standard Linear Layer

• To get a Standard Linear Layer
with parameters W that
includes our LoRA fine tuning:

• To remove the LoRA fine
tuning from that Standard
Linear Layer:

• If we do LoRA training on two
tasks s.t. the parameters B’A’
are for task 1 and B’’A’’ are for
task 2, then we can swap back
and forth between them

40
Figure inspired by He et al. (2022)

z = W0x + BAx
= (W0 + BA)x

LoRA Linear Layer

z = W0x
Standard Linear Layer

x

z

W0

A

BLinear
Linear

Linear

k

d

r

x

z

W0

Linear

W0 ∈ R
d×k

, x ∈ R
k
, z ∈ R

d

W0 ∈ R
d×k,

A ∈ R
r×k,B ∈ R

d×r

where r << min(d, k)

W←W0 + BA

W←W− BA = W0



LoRA
Important Details
• LoRA itself does NOT actually 

touch the bias parameters
• The bias parameters are 

already low rank, so there’s 
not further rank reduction to 
be gained there

• Most LoRA implementations 
provide an option to also 
fine-tune the bias 
parameters, but there’s no 
fancy machinery required for 
this

41
Figure inspired by He et al. (2022)

z = W0x + BAx + b
= (W0 + BA)x + b

LoRA Linear Layer

z = W0x + b Standard Linear Layer

x

z

W0

A

BLinear
Linear

Linear

k

d

r

x

z

W0

Linear

W0 ∈ R
d×k

, x ∈ R
k
,

z ∈ R
d
, b ∈ R

d

W0 ∈ R
d×k,

A ∈ R
r×k,B ∈ R

d×r

where r << min(d, k)



Transformer Language Model
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Each layer of a Transformer LM 
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Each hidden vector looks back at 
the hidden vectors of the current 
and previous timesteps in the 
previous layer.

The language model part is just like 
an RNN-LM.
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Transformer Layer

43
Figure inspired by He et al. (2022)
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LoRA for Transformer
• LoRA linear layers could replace every linear layer in the 

Transformer layer
• But the original paper only applies LoRA to the attention 

weights

44
Figure inspired by He et al. (2022)

m
ul

ti-
he

ad
ed

add & layer norm

WkWq Wv

X

Q K V

⨉ ⨉ ⨉

attention

feed-forward neural net

add & layer norm

＋

Lo
RA

Lo
RA

＋

tr
an

sf
or

m
er

X’

z = W0x + BAx
= (W0 + BA)x

LoRA Linear Layer

x

z

W0

A

BLinear
Linear

Linear

k

d

r

W0 ∈ R
d×k,

A ∈ R
r×k,B ∈ R

d×r

where r << min(d, k)

＋

Lo
RA



LoRA for Transformer
• LoRA linear layers could replace every linear layer in the 

Transformer layer
• But the original paper only applies LoRA to the attention 

weights
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Figure inspired by He et al. (2022)
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LoRA for Transformer
• LoRA linear layers could replace every linear layer in the 

Transformer layer
• But the original paper only applies LoRA to the attention 

weights

46
Table from http://arxiv.org/abs/2106.09685
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• Empirically, for GPT-3, they also find that it is most efficient to 
include LoRA only on the query and value linear layers



LoRA for Transformer
• LoRA linear layers could replace every linear layer in the 

Transformer layer
• But the original paper only applies LoRA to the attention 

weights

47
Table from http://arxiv.org/abs/2106.09685
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• Empirically, for GPT-3, they also find that it is most efficient to 
include LoRA only on the query and value linear layers

• During training only the new LoRA parameters are fine-tuned, 
all the other parameters are kept fixed



LoRA Results
Takeaways
• Applied to GPT-3, LoRA

achieves performance
almost as good as full fine-
tuning, but with far fewer
parameters

• On some tasks it even
outperforms full fine-
tuning

• For some datasets a rank
of r=1 is sufficient

• LoRA performs well when
the dataset is large or
small

48
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PEFT for Transformer
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Figure inspired by / copied from He et al. (2022)
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