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Multi-modal Models

e Multi-modal Model (MM): Al system capable of processing or
generating multiple data modalities (e.g., text, image, audio, video).

@ Multi-modal Foundation Models: A multi-modal, large-scale,
general-purpose Al model pre-trained on vast amounts of data (here
multi-modal) that can be adapted (via fine-tuning or prompting) to a
wide range of downstream tasks, ex. CLIP, DALL-E and LMMs.

o Large Multi-modal Models (LMMs): They anchor on a Large
Language Model (LLM) (e.g., GPT, LLaMA) as their reasoning core.
Other modalities (vision, audio, etc.) are aligned to the LLM's text
space for joint understanding/generation.
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Large Multi-modal Models (LMMs)

@ LMMs are interactive Al systems that are expected to have emergent
properties:
» Chain of thought reasoning
> In context learning
» Instruction following
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Large Multi-modal Models (LMMs)
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LLaVA: Large Language-and-Vision Assistant

@ The vision encoder converts input images into features Linear

projection layer convert these features into a space compatible with
the LLM.
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LLaVA: Large Language-and-Vision Assistant

Two-stage Training:
@ Stage 1: Pre-training for Vision-language Alignment. Only the
projection matrix is updated, based on a subset of CC3M.

@ Stage 2: Fine-tuning End-to-End. Both the projection matrix and
LLM are finetuned on curated dataset
» Visual Chat: Generated multimodal instruction data for daily
user-oriented applications.
» Science QA: Multimodal reasoning dataset for the science domain.
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Flamingo

@ Takes inputs a multimodal prompt containing images and/or videos

interleaved with text and generates text like a standard Language
Model.

@ Introduced in paper Flamingo: a Visual Language Model for Few-Shot
Learning in 2022.
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Flamingo

@ Flamingo as a few-shot learner
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Flamingo

@ One could also use Flamingo for visual question answering from an
image.

Input Prompt

# Completion

Question: What do you think
the capacities of these are?
Answer:

Question: What is odd about
this image? Explain why it is
unusual. Answer:

Question: What country is
this? Why do you think so?
Answer:

The floppy disk is 1.44MB
and the CD is 700MB.

The image is odd because
the elephant is in the back
of the truck. It is unusual
because elephants are not
usually transported in the
back of a truck.

It is Canada. I think so
because the flag is the
Canadian flag.
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Flamingo

@ Flamingo is also capable of multi-image visual dialogue out of the box.

This is a picture of two teddy
(7 bears on the moon.

‘What are they doing?
They are having a
[ conversation.
‘What object are they using?
(™ Itlooks like a computer.
Is this surprising?
™ Yes, itis surprising.

Why is this picture surprising
to you?
I think it is surprising because
teddy bears are not usually
(% found on the moon.

What is the common thing
about these three images? @

(™ They are all flamingos.
What is the difference be-
tween these three images? @

The first one is a cartoon, the

second one is a real flamingo,

and the third one is a 3D
(> model of a flamingo.

This is an apple with a sticker
onit.

‘What does the sticker say?
The sticker says "iPod".
Where is the photo taken?

It looks like it’s taken in a
backyard.

Do you think it is printed or
handwritten?

It looks like it’s handwritten.
What color is the sticker?

It’s white.

This is a cityscape. It looks
like Chicago.

‘What makes you think this is
Chicago?

I think it’s Chicago because
of the Shedd Aquarium in the
background.

7 o

‘What about this one? Which
city is this and what famous
landmark helped you recog-
nise the city?

This is Tokyo. I think it's
Tokyo because of the Tokyo

> Tower.
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Flamingo

@ Flamingo architecture

. Output: text
Pretrained and frozen ‘ .
a very serious cat.
Trained from scratch
| ] n-th GATED XATTN-DENSE
Perceiver Perceiver :
Resampler Resampler
1st GATED XATTN-DENSE

Processed text

| <image> This is a very cute dog.<image> This is

Interleaved visual/text data

E This is a very cute dog. This is
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Flamingo

@ Flamingo loss function

L
plylz) = [ ] p(yely<e, z<e)
/=1
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Flamingo

e Flamingo inputs

» The model takes interleaved visual/text data as input. The images are
extracted from the text and replaced with a common token e.g.
<image>. This can be then passed into the plain Language Model
component. The images are separately passed in through a vision
encoder model to convert them into fixed size embeddings.

. Pretrained and frozen

Output: text

®| a very serious cat.

Trained from scratch

Perceiver
Resampler
s
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Perceiver
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Interleaved visual/text data
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()
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\ <image> This is a very cute dog.<image> This is
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Flamingo

@ The Perceiver Resampler module
» Maps a variable size grid of spatio-temporal visual features output by
the Vision Encoder to a fixed number of output tokens (five in the
figure), independently from the input image resolution or the number
of input video frames.

Perceiver Resampler I I ‘ ‘
X _num_layers

def perceiver_resampler(

x.f, #The [T, S, d] visual features (T=time, S=space
FFW tine_embeddings, # The [T, 1, d] time pos embeddings
x, # R learned latents of shape [R, d]

nun_layers, # Nutber of layers
8
“""The Perceiver Resampler model.”""

Attention

[ ILH
HHHWH | | [ ’ ’ ey e

xf = flatten(x_f) #[T, S, dl > [T*5, d
# Apply the Perceiver Resampler layers.

]u[xl

y
flatten

for 1 in range(nun_layers)

Learned
latent
queries

# Attention
x = x + attention_i(q=x, kv=concat([x.f, xI))
# Feed forward.

X=X+ FHi(x)

return x
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Flamingo

@ The Perceiver Resampler module
» This transformer has a set of learned latent vectors as queries, and the

keys and values are a concatenation of the spatio-temporal visual

features with the learned latent vectors.

X_num_layers

Perceiver Resampler I I [{
=

T Kev=I

FW

Attention

ZIm

Jn=[x]
Ix

I 7]

t=2 Learned

latent

..= queries
| ]
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def perceiver_resanpler(
X.f, #The [T, S, d] visual features (T=tine, S=space)
tine_enbeddings, # The [T, 1, d] tine pos embeddings.
X, #R learned latents of shape [R, d]

# Add the time position embeddings and flatten
xf = x.f + time_enbeddings
xf = flatten(x_f) # [T, S, d] > [T +s, d]
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Flamingo

o GATED XATTN-DENSE layers

» To condition the LM on visual inputs, we insert new cross-attention
layers between existing pretrained and frozen LM layers.

def gated_xattn_dense(
o il

)
Applics a GATED XATTN-DENSE layer
Kev=I¥]
1. Gated Cross Attention
ated Feed Fo Layer

X —— = GATED XATTN-DENSE

t
I

‘ cross attention

M K:v;p(]T o-1v]
Vision l Language
input input
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Flamingo

o GATED XATTN-DENSE layers
» The keys and values in these layers are obtained from the vision
features while the queries are derived from the language inputs.
» They are followed by dense feed-forward layers. These layers are gated
so that the LM is kept intact at initialization for improved stability and
performance.

i

X —— = GATED XATTN-DENSE

1
I

camgacing

cross attention

v ]

M a=Iv]

Vision Language
input input
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