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Probabilistic graphical models

» A framework to tackle with complex joint distributions
Representation

Directed graphs: Bayesian network
Undirected graphs: Markov random fields

Learning
Inference

» This lecture
Representation in PGMs



Probabilistic graphical models

» Searching in the fully generalized space of distributions
even in a simple probabilistic problem is impossible!

» Learn an effective and general technique for

parameterizing probability distributions using only a few
parameters.



Probabilistic graphical models

» Independencies assumptions are useful
Simplify representation and alleviate inference complexities

» Enable us to incorporate domain knowledge and
structures

Modular combination of heterogeneous parts
Combining data and knowledge (Bayesian philosophy)



Bayesian networks

» Directed graphical models are tools to present family of
probability distributions that can be naturally described
using a directed acyclic graph.

Nodes as random variables
Edges as dependencies

» The intention behind these parameterization is chain
rule!
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Bayesian networks

» Bayesian networks represent a joint distribution in terms
of the graph structure and conditional probability
distributions (CPD)

G = (V,E)
e A random variable z; for each node 7z € V.

« One conditional probability distribution (CPD) p(z; | z4,) per
node, specitying the probability of z; conditioned on its parents’

values.

Intelligence

P(I,D,G,L,S) = P(I)P(D)P(G | I,D)P(L | G)P(S | I).




Bayesian networks
Discrete example

» When the variables are discrete, we may think of the
factors (CPDs) as probability tables, in which rows

correspond to assignments to parents and columns
correspond to values of the node.
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Bayesian networks
Continues example

X~N(0,1)

Y|X ~N(b + X, 0)




Bayesian networks

» A probability distribution is factorized over a DAG G if it
can be decomposed into a product of factors specified by

G.

» A Bayesian network represent distributions via products
of smaller, local conditional probability distributions.

Introduces independency assumptions over variables

» I(p): denote the set of all independencies that hold for a
joint distribution p.
p(x,y) = p(x)p(y) »x Ly €l(p)



Bayesian networks

» Let G be a graph over xq,x,,..,x, distribution p
factorizes over G if:

p(x11x2' ...,Xn) = Hp(xllpa(xl))
=1

» pal(.): parents of a node

» Factorization & Independence

If p factorizes over G, then any variable in p is independent of
its non-descendants given its parents (in G)

If any variable in the distribution p is independent of its non-
descendants given its parents (in the graph G) then p factorizes
over (4
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Independencies described by directed graphs

o Common parent. It G is ot the form X « Z — Y, and Z is observed,
then X 1 Y | Z. However, if Z is unobserved, then X [ Y.
Intuitively this stems from the fact that Z contains all the
information that determines the outcomes of X and Y once it is

observed, there is nothing else that aftects these variables’ outcomes.

o Cuscade: If G equals X — Z — Y, and Z is again observed, then,
again X | Y | Z. However, it Z is unobserved, then X / Y. Here,

the intuition is again that Z holds all the information that

determines the outcome of Y; thus, it does not matter what value X &
takes.

o V-structure (also known as explaining away): f Gis X — Z + Y,
then knowing Z couples X and Y. In other words, X | Y if Z is
unobserved, but X LY | Z it Z is observed.
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Independencies described by directed graphs
D-separation

» Considering three disjoint sets of nodes:
A B, C

» Ais d-separated from B by Cif all paths between A and B
are blocked by C

There is no active path between A and B

» Ais d-separated fromBbyCifA L B|C
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Path blocking

» Head to tail during path
CO-- O—>@—>O -0

XeEA YERB

» Tail to tail during path

®O<—®—>Q®

XeEA YERB

» Head to head, visiting a v-structure
Z and none of its descendants are observed

G- O

X€EA YEB
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Independencies described by directed graphs

For example, in the graph below, X; and X are d-separated given
X5, X3. However, X5, X3 are not d—separa.ted given X, X, because we
can find an active path (X, X5, X5, X3)

X4
X
\
x, -
X,
\/
X, X;
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Markov blanket of a node

» A variable is conditionally independent of all other
variables given its Markov blanket

» Markov blanket if a set A is U when:

The minimal set of nodes such that A is independent from the
rest of the graph if U is observed

» Markov blanket of a node:
All parents “”\ )

All children G E;f]/ ETD
Co-parents of children AN
/’_& \
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Markov random networks

» Undirected graphs for representation of joint
distributions

Unlike in the directed case, we are not saying anything about
how one variable is generated from another set of variables (as
a conditional probability distribution would do).

10 f X=Y =1 o

¢(X,Y){5 if X=Y=0
1 otherwise.
p(A,B,C,D) = %ﬁ(ﬂa B,C, D) oto
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Markov random networks

» They specify dependent variables (but no causality
relations) and define the strength of their interactions.

» This defines an energy landscape over the space of
possible assignments and we convert this energy to a
probability via the normalization constant.
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MRF factorization

» Clique: subsets of nodes in the graph that are fully
connected (complete subgraph)

» Maximal clique: no superset of the nodes in a clique are
also compose a clique
» Factors are functions of the variables in cliques

To reduce the number of factors we allow factors only for
maximal cliques

Cliques: {A,B,C}, {B,C,D}, {A B}, {A.C}, {B,C}, {B,D},
{C.D}. {A}. {B}. {C}{D}

Max-cliques: {A,B,C}, {B,C,D}
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MRF factorization

» A distribution p(.) is factorized over an MRF G if it can be
parameterized as follows,

(x1'x2' " xn) — Zl_[¢ (D)

Z= Z]_[qb(D)

where each D; is a complete subgraph of G

» When there is no direct edge between two nodes, x; and x;, there
exist at least the following conditional independency between them:

x; L x| X/{xi,x;}
To hold this independency in p(.), these two variables are not appeared
in the domain of a same factor
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MRF factorization

» Potential functions:
The function over each clique (factor)

» Potential functions and cliques in the graph completely
determine the joint distribution.

» Potentials are not necessarily marginal or conditional
distributions
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Markov random networks

» Formal definition

21

A Markov Random Field (MRF) is a probability distribution p over
variables 21, . . ., p, defined by an undirected graph GG in which nodes

correspond to variables &;. The probability p has the torm

p("Ela R '/L‘n) — % H ¢c($c);

where C' denotes the set of cligues (i.e., fully connected subgraphs) of G,
and each factor ¢ is a non-negative function over the variables in a

clique. The partition function

Z = Z 1] ¢e(zc)

« o3l CEC



Independencies in MRFs

» A simple rule:

Variables x and y are dependent if they are connected by a
path of unobserved variables.

» Markov blanket in MRFs:
In both BNs and MRFs
In MRFs: simply all neighbors of a node
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MRF example:
Image denoising

» Pixels are noisy observed variables: y;

» We assume the noise free image as a latent behind the
observed pixels: x;
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MRFs compared to BNs

» Pros.
They can be applied to a wider range of problems in which there is
no natural directionality associated with variable dependencies.

Undirected graphs can succinctly express certain dependencies that

Bayesian nets cannot easily describe (although the converse is also
true)

» Cons.

Computing the normalization constant Z requires summing over a
potentially exponential number of assignments.

NP-hard; many undirected models will be intractable and will require
approximation techniques.

Difficult to interpret.
It is much easier to generate data from a Bayesian network
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Hybrid graphs

» Partially directed acyclic graphs
A combination of both directed and undirected graphs
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Plate notation

» Plate notation is a rectangle in graphical model
representation which shows random variables generated

from the same distribution

» Plate notation present a replication of random variables
that share same parameters

(lntelligence Casp D Crsy D
Sy e I“
(Grade) Cesn ) Ces D)
— Students s o s

OSSR, Courses ¢ P SR
(Diffcuty) Coay) D C D(C:D
T\ A [ \
\ / 3\
(ﬂ;miﬁg,mrr) 1(51 (1)\ @ (';1 Cl)/ \ (ql C)/ \‘{(9‘ 'C)::'
/7__ L jf | /' /f | /
\ {// ‘1|' /7 i | !/’ \1 7
-u " o " . &
- Grade) . || @s.ad @& €60 \G(q (1)

(b)



Generative vs. discriminative models

» In generative models we describe the generation process
of observed variables
» In discriminative models, we learn how samples are
discriminated
Decision boundaries in classifiers

Discriminative Generative
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Generative vs. discriminative models
Example

» Generative classifier T
We should learn p(y), p(x|y)

0 .
» Discriminative classifier
We should learn p(x), p(y|x)
However, for classification task
p(y|x) is the only thing we need.
Less parameters are needed to be learned 0 —

» When we only need to discriminate
Between samples, discriminative models are preferred.
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Generative PGM example
Hyperspectral unmixing with PGMs

» A generative model
K = number of patches
P = number of pixels in each patch
N = the dimension of vector A

o 5]
.

%
I_'H.:]I.-',"'I."" F:lP 5
k=1 K
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Next topic

» Probabilistic graphical models
Exact and approximate inference
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