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The inference problem

 Inference: answering conditional or marginal
probabilities in a joint distribution
 The graph structure and CPDs (in BNs) or potential functions

(in MRFs) are known.

 Example:

𝑝𝑝 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 1 = ?
𝑝𝑝 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 1 = ?
𝑝𝑝 𝑆𝑆𝑆𝑆𝑆𝑆 = ?
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 Notation:
 Colored nodes: observed random variables
 White nodes: latent/hidden/unobserved random variables
 Others not in a circle: parameters of CPDs

The inference problem

3

𝒙𝒙𝟐𝟐

𝒙𝒙𝟑𝟑

𝒙𝒙𝟔𝟔

𝒙𝒙𝟒𝟒

𝒙𝒙𝟏𝟏

𝒙𝒙𝟓𝟓

a b

c



 Consider the following joint distribution
𝑝𝑝(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥6)

over discrete random variables with k possible values.

 An inference query:
𝑝𝑝 𝑥𝑥2 𝑥𝑥4 = 𝑥𝑥4 = ?

 A naïve solution:

𝑝𝑝 𝑥𝑥2 𝑥𝑥4 = 𝑥𝑥4 =
𝑝𝑝(𝑥𝑥2, 𝑥𝑥4)

∑𝑥𝑥2 𝑝𝑝(𝑥𝑥2, 𝑥𝑥4)

𝑝𝑝 𝑥𝑥2, 𝑥𝑥4 = �
𝑥𝑥1

�
𝑥𝑥3

�
𝑥𝑥5

�
𝑥𝑥6

𝑝𝑝(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4, 𝑥𝑥5, 𝑥𝑥6)

The inference problem
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The inference problem

 However, this distribution is factorized
Over this graph and we have:

𝑝𝑝 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥6 =
𝑝𝑝 𝑥𝑥2 𝑝𝑝 𝑥𝑥1 𝑝𝑝 𝑥𝑥3 𝑥𝑥1, 𝑥𝑥2 𝑝𝑝 𝑥𝑥5 𝑥𝑥4, 𝑥𝑥3 𝑝𝑝(𝑥𝑥6|𝑥𝑥5)

 A better solution:

𝑝𝑝 𝑥𝑥2, 𝑥𝑥4 = �
𝑥𝑥1

�
𝑥𝑥3

�
𝑥𝑥5

�
𝑥𝑥6

𝑝𝑝(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4, 𝑥𝑥5, 𝑥𝑥6)

= �
𝑥𝑥1

�
𝑥𝑥3

�
𝑥𝑥5

�
𝑥𝑥6

𝑝𝑝 𝑥𝑥2 𝑝𝑝 𝑥𝑥1 𝑝𝑝 𝑥𝑥3 𝑥𝑥1, 𝑥𝑥2 𝑝𝑝 𝑥𝑥5 𝑥𝑥4, 𝑥𝑥3 𝑝𝑝(𝑥𝑥6|𝑥𝑥5)
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 A better solution:

𝑝𝑝 𝑥𝑥2, 𝑥𝑥4 = �
𝑥𝑥1

�
𝑥𝑥3

�
𝑥𝑥5

�
𝑥𝑥6

𝑝𝑝(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4, 𝑥𝑥5, 𝑥𝑥6)

= �
𝑥𝑥1

�
𝑥𝑥3

�
𝑥𝑥5

�
𝑥𝑥6

𝑝𝑝 𝑥𝑥2 𝑝𝑝 𝑥𝑥1 𝑝𝑝 𝑥𝑥3 𝑥𝑥1, 𝑥𝑥2 𝑝𝑝 𝑥𝑥5 𝑥𝑥4, 𝑥𝑥3 𝑝𝑝(𝑥𝑥6|𝑥𝑥5)

 𝑂𝑂(𝑘𝑘4) computation !

Distributive law: If 𝑋𝑋 ∉ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙1) then ∑𝑋𝑋𝜙𝜙1𝜙𝜙2 = 𝜙𝜙1 ∑𝑋𝑋𝜙𝜙2

 Therefore, we can perform summation over the product of
only a subset of factors

The inference problem
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The inference problem

 A better solution:

𝑝𝑝 𝑥𝑥2, 𝑥𝑥4 = �
𝑥𝑥1

�
𝑥𝑥3

�
𝑥𝑥5

�
𝑥𝑥6

𝑝𝑝(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4, 𝑥𝑥5, 𝑥𝑥6)

= �
𝑥𝑥1

�
𝑥𝑥3

�
𝑥𝑥5

�
𝑥𝑥6

𝑝𝑝 𝑥𝑥2 𝑝𝑝 𝑥𝑥1 𝑝𝑝 𝑥𝑥3 𝑥𝑥1, 𝑥𝑥2 𝑝𝑝 𝑥𝑥5 𝑥𝑥4, 𝑥𝑥3 𝑝𝑝(𝑥𝑥6|𝑥𝑥5) =

𝑝𝑝(𝑥𝑥2)�
𝑥𝑥1

𝑝𝑝 𝑥𝑥1 �
𝑥𝑥3

𝑝𝑝 𝑥𝑥3 𝑥𝑥1, 𝑥𝑥2 �
𝑥𝑥5

𝑝𝑝 𝑥𝑥5 𝑥𝑥4, 𝑥𝑥3 �
𝑥𝑥6

𝑝𝑝(𝑥𝑥6|𝑥𝑥5)

 𝑂𝑂(4𝑘𝑘3) computation !
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 Generally, when a distribution is factorized, Variable
elimination algorithm can decrease the computational
complexity.

 Variable elimination algorithm for exact inference:
 We select an elimination order of random variables
 For each random variable, all factors containing that variable 

are removed from the set of factors and multiplied
 The selected random variable is summed out from the product

of factors and a new factor is obtained
 The resulted factor is multiplied to others and algorithm is

continued.

Variable elimination
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Exact inference: variable elimination
Example
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Exact inference: variable elimination
Example

10



Exact inference: variable elimination
Example
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Exact inference: variable elimination
Example
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Exact inference: variable elimination

 In each elimination step, we need 𝑂𝑂(𝑘𝑘𝑚𝑚) computations
where 𝑚𝑚 is the number of variables is the product of
factors containing the variable
 𝑘𝑘 is the size of the largest scope of random variables

 With a system with 𝑛𝑛 random variables, we need 𝑂𝑂(𝑛𝑛𝑘𝑘𝑚𝑚)
computations
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Inference algorithms

 Exact inference :
 Variable elimination

 Can be applied on any graph
 Responds only one query

 Message passing
 Sum-product
 Only for trees

 Junction tree
 Can be applied on any graph

 In many real-world applications these algorithms are
computationally too complex to be applied

14



Inference algorithms

 Approximate inference:
 Deterministic approximation

 Variational inference
 Stochastic simulation/sampling methods

15



Variational inference

 The calculus of variations (or variational calculus) is a field
of mathematical analysis that uses variations, which are
small changes in functions and functionals, to find
maxima and minima of functionals
 Functionals: functions of functions

 Variational Bayesian methods are a family of techniques
for approximating intractable integrals arising in Bayesian
inference and machine learning.

16



Variational inference

 Generally, consider two sets of random variables in a joint
distribution 𝑝𝑝:
 𝑋𝑋: Observed random variables
 Z: Latent random variables

calculate 𝑝𝑝(𝑍𝑍|𝑋𝑋)?

 𝑝𝑝 𝑍𝑍 𝑋𝑋 = 𝑝𝑝(𝑋𝑋,𝑍𝑍)
𝑝𝑝(𝑋𝑋)

, where 𝑝𝑝(𝑋𝑋) = ∫𝑝𝑝(𝑋𝑋, 𝑍𝑍)

 We usually have the joint distribution 𝑝𝑝(𝑋𝑋, 𝑍𝑍).
 However, calculating the marginal distribution 𝑝𝑝(𝑋𝑋) is

interactable.
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Variational inference

 Generally, consider two sets of random variables in a joint
distribution 𝑝𝑝:
 𝑋𝑋: Observed random variables
 Z: Latent random variables

calculate 𝑝𝑝(𝑍𝑍|𝑋𝑋)?

 Solution: we select a family distribution 𝑄𝑄 in which the
inference query is tractable. Then we find the best
approximate of 𝑝𝑝 in 𝑄𝑄.

18



Variational inference

 Solution: we select a family distribution 𝑄𝑄 in which the
inference query is tractable. Then we find the best
approximate of 𝑝𝑝 in 𝑄𝑄.

 Converting inference to optimization over a functional
(variational calculus)
 A family distribution 𝑄𝑄
 A similarity metric between 𝑝𝑝 and 𝑞𝑞

 KL-divergence

19
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Variational inference

 Kullback-Leibler divergence between two distribution:

𝐾𝐾𝐾𝐾(𝑝𝑝 ∥ 𝑞𝑞) = �𝑝𝑝 𝑥𝑥 log
𝑝𝑝 𝑥𝑥
𝑞𝑞 𝑥𝑥

𝑑𝑑𝑑𝑑

 This is positive for any two distributions

 𝐾𝐾𝐾𝐾(𝑝𝑝| 𝑞𝑞 = 0 if and only if 𝑝𝑝 ≡ 𝑞𝑞

 It is not symmetric
 we call it divergence not distance

20



KL-divergence

 Suppose 𝑝𝑝 is the target distribution we want to
approximate it,

 I-projection: 𝐾𝐾𝐾𝐾(𝑞𝑞 ∥ 𝑝𝑝)

 M-projection: 𝐾𝐾𝐾𝐾(𝑝𝑝 ∥ 𝑞𝑞)

 Obviously, when 𝑝𝑝 ∉ 𝑄𝑄 the result of following
optimizations is different

min
𝑞𝑞
𝐾𝐾𝐾𝐾(𝑝𝑝 ∥ 𝑞𝑞)

min
𝑞𝑞
𝐾𝐾𝐾𝐾(𝑞𝑞 ∥ 𝑝𝑝)

21



KL-divergence

 𝑝𝑝 is a mixture of gaussian, 𝑄𝑄 is the family of gaussian
distributions.

M-projection I-projection
min
𝑞𝑞
𝐾𝐾𝐾𝐾(𝑝𝑝 ∥ 𝑞𝑞) min

𝑞𝑞
𝐾𝐾𝐾𝐾(𝑞𝑞 ∥ p)

22
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Variational inference

 In variational inference: I-projection
 Because of the computational complexity of 𝑝𝑝.

 We should solve the following optimization to find the best 𝑞𝑞:

min
𝑞𝑞

𝐾𝐾𝐾𝐾(𝑞𝑞(𝑍𝑍) ∥ 𝑝𝑝(𝑍𝑍|𝑋𝑋))

𝐾𝐾𝐾𝐾 𝑞𝑞(𝑍𝑍) ∥ 𝑝𝑝(𝑍𝑍|𝑋𝑋) = �𝑞𝑞 𝑍𝑍 log
𝑞𝑞(𝑍𝑍)
𝑝𝑝(𝑍𝑍|𝑋𝑋)

𝑑𝑑𝑑𝑑 = �𝑞𝑞 𝑍𝑍 log
𝑞𝑞 𝑍𝑍 𝑝𝑝(𝑋𝑋)
𝑝𝑝(𝑍𝑍, 𝑋𝑋)

𝑑𝑑𝑍𝑍

= �𝑞𝑞 𝑍𝑍 log
𝑞𝑞 𝑍𝑍 𝑝𝑝(𝑋𝑋)
𝑝𝑝(𝑍𝑍, 𝑋𝑋)

𝑑𝑑𝑍𝑍 = �𝑞𝑞 𝑍𝑍 log
𝑞𝑞 𝑍𝑍
𝑝𝑝(𝑍𝑍, 𝑋𝑋)

𝑑𝑑𝑍𝑍 + �𝑞𝑞 𝑍𝑍 log 𝑝𝑝 𝑋𝑋 𝑑𝑑𝑑𝑑

= 𝐾𝐾𝐾𝐾 𝑞𝑞 𝑍𝑍 ∥ 𝑝𝑝 𝑍𝑍, 𝑋𝑋 + log 𝑝𝑝(𝑥𝑥)

23



Variational inference

 𝐾𝐾𝐾𝐾 𝑞𝑞(𝑍𝑍) ∥ 𝑝𝑝(𝑍𝑍|𝑋𝑋) = 𝐾𝐾𝐾𝐾 𝑞𝑞 𝑍𝑍 ∥ 𝑝𝑝 𝑍𝑍, 𝑋𝑋 + log 𝑝𝑝(𝑥𝑥)

 Two facts:
 𝐾𝐾𝐾𝐾 𝑞𝑞(𝑍𝑍) ∥ 𝑝𝑝(𝑍𝑍|𝑋𝑋) > 0 → log 𝑝𝑝(𝑥𝑥) > −𝐾𝐾𝐾𝐾 𝑞𝑞 𝑍𝑍 ∥ 𝑝𝑝 𝑍𝑍, 𝑋𝑋

Evidence lower bound (ELBO)

 log 𝑝𝑝(𝑥𝑥) < 0 → 𝐾𝐾𝐾𝐾 𝑞𝑞 𝑍𝑍 ∥ 𝑝𝑝 𝑍𝑍, 𝑋𝑋 > 𝐾𝐾𝐾𝐾 𝑞𝑞(𝑍𝑍) ∥ 𝑝𝑝(𝑍𝑍|𝑋𝑋)
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Variational inference

 log 𝑝𝑝(𝑥𝑥) < 0 → 𝐾𝐾𝐾𝐾 𝑞𝑞 𝑍𝑍 ∥ 𝑝𝑝 𝑍𝑍, 𝑋𝑋 > 𝐾𝐾𝐾𝐾 𝑞𝑞(𝑍𝑍) ∥ 𝑝𝑝(𝑍𝑍|𝑋𝑋)

The upper bound

 In variational inference, we minimize the above upper
bound

argmin
𝑞𝑞∈𝑄𝑄

𝐾𝐾𝐾𝐾(𝑞𝑞 𝑍𝑍 ∥ 𝑝𝑝(𝑍𝑍, 𝑋𝑋))

25



Variational mean filed approximation

 A common type of variational Bayes

Mean-field assumption: the unknown variables can be
partitioned so that each partition is independent of the
others

26



Variational mean filed approximation

Naïve mean field: the family distribution 𝑄𝑄 is fully factorized
as follows:

𝑞𝑞 𝑍𝑍 = �
𝑖𝑖

𝑞𝑞𝑖𝑖(𝑧𝑧𝑖𝑖)

 Variational mean field inference:

argmin
𝑞𝑞∈𝑄𝑄

𝐾𝐾𝐾𝐾(𝑞𝑞 𝑍𝑍 ∥ 𝑝𝑝(𝑍𝑍, 𝑋𝑋)) = argmin
𝑞𝑞1,𝑞𝑞2,..,𝑞𝑞𝑛𝑛

𝐾𝐾𝐾𝐾(𝑞𝑞 𝑍𝑍 ∥ 𝑝𝑝(𝑍𝑍, 𝑋𝑋))
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Variational mean filed approximation

Naïve mean field: the family distribution 𝑄𝑄 is fully factorized
as follows:

𝑞𝑞 𝑍𝑍 = �
𝑗𝑗

𝑞𝑞𝑗𝑗(𝑧𝑧𝑗𝑗)

 We iteratively optimizing over one coordinate (factor) at a
time, as follows,

𝜕𝜕𝜕𝜕𝜕𝜕(𝑞𝑞 𝑍𝑍 ∥𝑝𝑝(𝑍𝑍,𝑋𝑋))
𝜕𝜕𝑞𝑞𝑗𝑗

= 0 to obtain 𝑞𝑞𝑗𝑗∗

28



Variational mean filed approximation

In variational naïve mean field inference, optimum factors
are obtained as follows :

log 𝑞𝑞𝑗𝑗∗ (𝑧𝑧𝑗𝑗) ∝ Ε𝑞𝑞−𝑗𝑗 log 𝑝𝑝(𝑋𝑋, 𝑍𝑍)
As each 𝑞𝑞𝑗𝑗∗(𝑧𝑧𝑗𝑗) depends on others, 𝑞𝑞−𝑗𝑗:

1. We initialize 𝑞𝑞𝑗𝑗∗s
2. We iteratively update each 𝑞𝑞𝑗𝑗∗ until convergence!

29



Variational mean filed approximation

In variational naïve mean field inference, optimum factors
are obtained as follows:

log 𝑞𝑞𝑗𝑗∗ (𝑧𝑧𝑗𝑗) ∝ Ε𝑞𝑞−𝑗𝑗 log 𝑝𝑝(𝑋𝑋, 𝑍𝑍)

 Proof:

𝐾𝐾𝐾𝐾 𝑞𝑞 𝑍𝑍 ∥ 𝑝𝑝 𝑍𝑍, 𝑋𝑋 = �𝑞𝑞 𝑍𝑍 log
𝑞𝑞(𝑍𝑍)
𝑝𝑝(𝑍𝑍, 𝑋𝑋)

𝑑𝑑𝑑𝑑

= Ε𝑞𝑞 𝑍𝑍 log
𝑞𝑞(𝑍𝑍)
𝑝𝑝(𝑋𝑋, 𝑍𝑍)

= Ε𝑞𝑞 𝑍𝑍 log 𝑞𝑞(𝑍𝑍) − Ε𝑞𝑞 𝑍𝑍 log 𝑝𝑝(𝑋𝑋, 𝑍𝑍)

30
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Variational mean filed approximation
proof cont.
 We know,

𝑞𝑞 𝑍𝑍 = �
𝑖𝑖

𝑞𝑞𝑖𝑖(𝑧𝑧𝑖𝑖) → log 𝑞𝑞(𝑍𝑍) = �
𝑖𝑖

log 𝑞𝑞𝑖𝑖(𝑧𝑧𝑖𝑖)

 Therefore,
Ε𝑞𝑞 𝑍𝑍 log 𝑞𝑞(𝑍𝑍) = ∑𝑖𝑖 Ε𝑞𝑞𝑖𝑖 𝑧𝑧𝑖𝑖 log 𝑞𝑞𝑖𝑖(𝑧𝑧𝑖𝑖)

 Also,

Ε𝑞𝑞 𝑍𝑍 log 𝑝𝑝(𝑋𝑋, 𝑍𝑍) = Ε𝑞𝑞𝑗𝑗 𝑧𝑧𝑗𝑗 Ε𝑞𝑞−𝑗𝑗 log 𝑝𝑝(𝑋𝑋, 𝑍𝑍)

31
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Variational mean filed approximation
proof cont.
 Therefore,

𝐾𝐾𝐾𝐾 𝑞𝑞 𝑍𝑍 ∥ 𝑝𝑝 𝑍𝑍, 𝑋𝑋

= �
𝑖𝑖

Ε𝑞𝑞𝑖𝑖 𝑧𝑧𝑖𝑖 log 𝑞𝑞𝑖𝑖(𝑧𝑧𝑖𝑖) − Ε𝑞𝑞𝑗𝑗 𝑧𝑧𝑗𝑗 Ε𝑞𝑞−𝑗𝑗 log 𝑝𝑝(𝑋𝑋, 𝑍𝑍)

 and

𝜕𝜕 𝐾𝐾𝐾𝐾 𝑞𝑞 𝑍𝑍 ∥ 𝑝𝑝 𝑍𝑍, 𝑋𝑋
𝜕𝜕𝑞𝑞𝑗𝑗

=
𝜕𝜕 ∫𝑧𝑧𝑗𝑗 𝑞𝑞𝑗𝑗 𝑧𝑧𝑗𝑗 −Ε𝑞𝑞−𝑗𝑗 log 𝑝𝑝 𝑋𝑋, 𝑍𝑍 + log 𝑞𝑞𝑗𝑗(𝑧𝑧𝑗𝑗) 𝑑𝑑𝑧𝑧𝑗𝑗 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝜕𝜕𝑞𝑞𝑗𝑗
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Variational mean filed approximation
proof cont.
 According to “Euler–Lagrange equation” we can write,

𝜕𝜕𝜕𝜕𝜕𝜕 𝑞𝑞 𝑍𝑍 ∥ 𝑝𝑝 𝑍𝑍, 𝑋𝑋
𝜕𝜕𝑞𝑞𝑗𝑗

=
𝜕𝜕𝑞𝑞𝑗𝑗(𝑧𝑧𝑗𝑗) −Ε𝑞𝑞−𝑗𝑗 log 𝑝𝑝 𝑋𝑋, 𝑍𝑍 + log 𝑞𝑞𝑗𝑗(𝑧𝑧𝑗𝑗)

𝜕𝜕𝑞𝑞𝑗𝑗

 Remember the goal is:
𝑞𝑞𝑗𝑗∗ = argmin

𝑞𝑞𝑗𝑗
𝐾𝐾𝐾𝐾 𝑞𝑞 𝑍𝑍 ∥ 𝑝𝑝 𝑍𝑍, 𝑋𝑋

 Therefore:
𝜕𝜕 𝑞𝑞𝑗𝑗(𝑧𝑧𝑗𝑗) Ε𝑞𝑞−𝑗𝑗 log 𝑝𝑝(𝑋𝑋, 𝑍𝑍) − log 𝑞𝑞𝑗𝑗(𝑧𝑧𝑗𝑗)

𝜕𝜕𝑞𝑞𝑗𝑗
= 0

→ log 𝑞𝑞𝑗𝑗∗ (𝑧𝑧𝑗𝑗) = Ε𝑞𝑞−𝑗𝑗 log 𝑝𝑝(𝑋𝑋, 𝑍𝑍) + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
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Inference algorithms

 Approximate inference:
 Deterministic approximation

 Variational inference
 Stochastic simulation/sampling methods

34



Sampling based approximation

 Consider the following set of i.i.d. samples from the
distribution 𝑝𝑝(𝑥𝑥):

𝐷𝐷 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛}

Monte Carlo method: for an arbitrary function 𝑓𝑓(𝑥𝑥) of
random variable 𝑥𝑥 , we can estimate Ε𝑝𝑝[𝑓𝑓] as follows
(empirical expectation),

Ε𝑝𝑝 𝑓𝑓 =
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑓𝑓(𝑥𝑥𝑖𝑖)
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Sampling based approximation

Monte Carlo method: for an arbitrary function 𝑓𝑓(𝑥𝑥) of
random variable 𝑥𝑥 , we can estimate Ε𝑝𝑝[𝑓𝑓] as follows
(empirical expectation),

Ε𝑝𝑝 𝑓𝑓 =
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑓𝑓(𝑥𝑥𝑖𝑖)

 Marginal probability: p x1 = k → 𝑓𝑓 = 𝐼𝐼(𝑥𝑥1 = 𝑘𝑘)
 Mean of a distribution: 𝑓𝑓 = 𝑥𝑥
 …
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Forward sampling in a BN

Given a BN, and number of samples 𝑁𝑁
Choose a topological order on variables: 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑀𝑀
For 𝑖𝑖 = 1 to 𝑁𝑁

For 𝑗𝑗 = 1 to 𝑀𝑀
 Sample 𝑥𝑥𝑗𝑗𝑖𝑖 from the distribution 𝑝𝑝(𝑥𝑥𝑗𝑗|𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑥𝑥𝑗𝑗 )

Add 𝑥𝑥1𝑖𝑖 , 𝑥𝑥2𝑖𝑖 , … , 𝑥𝑥𝑀𝑀𝑖𝑖 to the sample set

37



Forward sampling in a BN

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐷𝐷 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝(𝐷𝐷)
 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐼𝐼 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝 𝐼𝐼
 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐺𝐺 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝(𝐺𝐺|𝐷𝐷, 𝐼𝐼)
 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝(𝑆𝑆|𝐼𝐼)
 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐿𝐿 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝(𝐿𝐿|𝐺𝐺)
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Forward sampling in a BN

 Problems:
 When the evidence rarely happens, we would need lots of

samples, and most would be wasted
 Overall probability of accepting a sample rapidly decreases

when the number of observed variables and states that those
variables can take increases

 This approach is very slow and rarely used in practice.
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Importance sampling

 When sampling from the target distribution 𝑝𝑝 is hard, we use a
proposal distribution 𝑞𝑞
 𝑞𝑞 should dominates 𝑝𝑝 → 𝑞𝑞 𝑥𝑥 > 0 whenever 𝑝𝑝 𝑥𝑥 > 0

 We sample from the proposal distribution 𝑞𝑞 and consider a
weight for each sample:

Ε𝑝𝑝 𝑓𝑓 = �𝑓𝑓 𝑥𝑥 𝑝𝑝 𝑥𝑥 𝑑𝑑𝑑𝑑 = �𝑓𝑓 𝑥𝑥
𝑝𝑝 𝑥𝑥
𝑞𝑞 𝑥𝑥

𝑞𝑞 𝑥𝑥 𝑑𝑑𝑑𝑑

Ε𝑝𝑝 𝑓𝑓 ≃
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑓𝑓 𝑥𝑥𝑖𝑖
𝑝𝑝 𝑥𝑥𝑖𝑖

𝑞𝑞 𝑥𝑥𝑖𝑖
𝑥𝑥𝑖𝑖 ∼ 𝑞𝑞 𝑥𝑥

Ε𝑝𝑝 𝑓𝑓 ≃
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑓𝑓 𝑥𝑥𝑖𝑖 𝑤𝑤(𝑥𝑥𝑖𝑖) 𝑤𝑤(𝑥𝑥𝑖𝑖) =
𝑝𝑝 𝑥𝑥𝑖𝑖

𝑞𝑞 𝑥𝑥𝑖𝑖
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Importance sampling

 Importance sampling depends on how well 𝑞𝑞 matches 𝑝𝑝.
 For mismatch distributions, weights may be dominated by few

samples having large weights, with the remaining weights
being relatively insignificant

 It is common that 𝑃𝑃(𝒙𝒙)𝑓𝑓(𝒙𝒙) is strongly varying and has a
significant proportion of its mass concentrated in a small
region
 The problem is more severe if none of the samples falls in the

regions where 𝑃𝑃(𝒙𝒙)𝑓𝑓(𝒙𝒙) is large.
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Problems of naïve Monte Carlo method

 Direct sampling: only when we can sample from 𝑝𝑝(𝑥𝑥)
 Wasteful for rare evidences

 Importance sampling: when the proposal 𝑞𝑞(𝑥𝑥) is very
different from 𝑝𝑝 𝑥𝑥 most samples have very low weights.
 In fact, finding a good proposal 𝑞𝑞(𝑥𝑥) that is similar to
𝑝𝑝 𝑥𝑥 usually requires knowledge of the analytic form of
𝑝𝑝 𝑥𝑥 that is not available
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Markov chain Monte Carlo (MCMC)

 Using an adaptive distribution 𝑞𝑞(𝑥𝑥′|𝑥𝑥) instead of a fixed
distribution 𝑞𝑞 𝑥𝑥 , where 𝑥𝑥 is the last accepted sample
and 𝑥𝑥′ is the new sample.
 During sampling process the proposal distribution changes as a

function of previous sampled data
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Markov chain Monte Carlo (MCMC)

 Different methods
 Metropolis-Hastings
 Gibbs sampling
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Markov chain Monte Carlo (MCMC)

 Metropolis-Hastings
 Sample from 𝑞𝑞(𝑥𝑥′|𝑥𝑥), where 𝑥𝑥 is the previous sample
 As 𝑥𝑥 changes, 𝑞𝑞 𝑥𝑥′ 𝑥𝑥 can also change
 Accept this new sample with following probability

𝐴𝐴 𝑥𝑥′ 𝑥𝑥 = min(1,
⁄𝑝𝑝 𝑥𝑥′ 𝑞𝑞(𝑥𝑥′|𝑥𝑥)
⁄𝑝𝑝 𝑥𝑥 𝑞𝑞(𝑥𝑥|𝑥𝑥′) )

 The acceptance rate 𝐴𝐴 𝑥𝑥′ 𝑥𝑥 guarantees that after sufficiently
many draws, samples are generated from the target
distribution 𝑝𝑝(𝑥𝑥)
 Burn-in samples: samples generated in initial iterations and are not

from 𝑝𝑝(𝑥𝑥)

45
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Markov chain Monte Carlo (MCMC)

Metropolis-Hastings algorithm:
Initialize starting point: 𝑥𝑥0 , set t=0
Repeat until convergence:

Sample 𝑥𝑥∗ ∽ 𝑞𝑞 𝑥𝑥∗ 𝑥𝑥

𝐴𝐴 𝑥𝑥∗ 𝑥𝑥 = min(1,
⁄𝑝𝑝 𝑥𝑥′ 𝑞𝑞(𝑥𝑥′|𝑥𝑥)
⁄𝑝𝑝 𝑥𝑥 𝑞𝑞(𝑥𝑥|𝑥𝑥′)

)

Sample 𝑢𝑢 ∽ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 (0,1)
If 𝑢𝑢 < 𝐴𝐴 𝑥𝑥∗ 𝑥𝑥 :

𝑥𝑥𝑡𝑡+1 = 𝑥𝑥∗

Else:
𝑥𝑥𝑡𝑡+1 = 𝑥𝑥𝑡𝑡

Discard Burn-in samples

46

Burn-in samples



Markov chain Monte Carlo (MCMC)

 Metropolis-Hastings example:
 The proposal distribution 𝑞𝑞(𝑥𝑥′|𝑥𝑥) is a gaussian distribution
 The true distribution 𝑝𝑝(𝑥𝑥) is a bimodal with two peaks!
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Markov chain Monte Carlo (MCMC)

 Metropolis-Hastings example:
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Markov chain Monte Carlo (MCMC)

 Metropolis-Hastings example:
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Markov chain Monte Carlo (MCMC)

 Metropolis-Hastings example:
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Markov chain Monte Carlo (MCMC)

 Metropolis-Hastings example:
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Markov chain Monte Carlo (MCMC)

 Metropolis-Hastings example:
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Next topic

 Probabilistic graphical models
 Learning
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