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The inference problem

» Inference: answering  conditional or marginal
probabilities in a joint distribution

The graph structure and CPDs (in BNs) or potential functions
(in MRFs) are known.
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dav | d it |t
p(Dif ficulty|Letter = 1) =7? 0 [ o4 \(___ - pea]e
p(Letter|Intelligence = 1) =? Diffculty > (nteligence)
p(SAT) =7 clele] 20 D
i%d® 03 |04 |03 rade s N2
i%dl | 005|025 | 07 / \N
ild" o9 | 008|002 ¢ Tt L
Td los |03 |0z | —mc— i | 095 | 0.0
\, il {02 |08
II:I El
gl|ol |os
2 3- 04 0.6 KoIIer' BOOk
g | 099 | 0ol




The inference problem

» Notation:
Colored nodes: observed random variables
White nodes: latent/hidden/unobserved random variables
Others not in a circle: parameters of CPDs




The inference problem
» Consider the following joint distribution

(X1, X2, eun) Xg)
over discrete random variables with k possible values.

» An inference query:
p(xzlx, =%,) =7

» A naive solution:

Pty = T) = ozt
2 * * sz p(xZ’ x_4)

p(XZJ X_4) — Z Z Z Z p(xl' X2,X3, X_4, X5, x6)

X1 X3 X5 Xg




The inference problem

» However, this distribution is factorized
Over this graph and we have:

P(X1, X9, ey Xg) =
p(x2)p(xq)p(x3|x1, x2)p (x5 x4, X3)D (X6 |X5)

» A better solution:

P(xz; X_4) — Z Z Z Z p(xl; X2, X3, X_4, X5, x6)

X1 X3 X5 Xg

= Z Z Z Z p(x2)p (X)) (x3]|x1, X2)0 (X5 X4, Xx3)P (X6 | X5)

X1 X3 X5 Xg




The inference problem

» A better solution:

P(xz; X_4) — Z Z Z Z P(Xl, X2, X3, X_4, X5, x6)

X1 X3 X5 Xg

= Z Z Z Z p(x2)p (X)) (x3]|x1, X2) 0 (X5|Xs, Xx3)P (X6 | X5)

X1 X3 X5 Xg

» 0(k*) computation !

Distributive law: If X & scope(¢,) then Xy d105 = P Dy O

» Therefore, we can perform summation over the product of
only a subset of factors
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The inference problem

» A better solution:

p(x2,%y) = Z z z z p(x1, X3, X3, Xg, X5, Xg)

X1 X3 X5 Xg

= z z z z p(x2)p(x)p(x3lx1, x2) P (x5|%4, X3)D (X6 |X5) =

X1 X3 X5 Xg

p() Y pO) Y pleals, x) ) plxsa,x3) ) plxsls)

» 0(4k?) computation !



Variable elimination

» Generally, when a distribution is factorized, Variable
elimination algorithm can decrease the computational
complexity.

» Variable elimination algorithm for exact inference:
We select an elimination order of random variables

For each random variable, all factors containing that variable
are removed from the set of factors and multiplied

The selected random variable is summed out from the product
of factors and a new factor is obtained

The resulted factor is multiplied to others and algorithm is
continued.



Exact inference: variable elimination
Example

» Query: P(X3]|X7 = X7)

» P(X;3]x;) o P(X5, X7)

P(x7,X7)

= D 0L 0 0 0 Pz s s o )

X1 Xz Xy Xg Xg Xg

Consider the elimination order Xy, X3, X4, Xz, X¢, Xg
P{XZJ)??)

- Z Z Z Z Z Z P(x1)P(x2)P(x3|xy, x2) P(xalx3) P(x5|x2) P (xg|x3, X7) P (X7| X4, X5)P(xg|X7)

Xg Xg X5 Xy X3 X3



Exact inference: variable elimination
Example

POo) = ) ) D ) D PLa)P(xals) Pl )P (xelis, )P (%, x4, 5P ;) Z P(xy)P(xslxy, ;)

Xg Xg X5 X4 X3 /
ZZZZ Z P(x3)P(xylx3) P(xs|x2) P(x6lx3, X7) P (X5 | x4, x5) P(xg| X7 )My (x, x3)

Xg X3 X4 X3

= ZZZZP(xz)P(xﬂxg)P(fﬂxé xs)P(xam)ZP(x4|x3>P(x(,|x3 £7)m (xz, %3)
7

ZZZZP(xZJP(x5|x2)P(x?|x4 x5)P (xg|%;)ma(x3, X6, %4)

Xg X5 Xg

> z Z P(x,)P (x |x,) P (x| ;) Z P(%, 14, X5)M3 (X X6, X5)
ZZZP(xz)P(xg|x2)P(x3|x?}m4(x;r:’f/5

Xg X35

= > D PC)P(xsl%) D Plxsla)ma (s, s, %)
= > D PC)P sl )ms (2, %)

xXg Xg

= z P(xz)P(xglf?)Z ms (2, Xe)

1( = ZP(xZ)P(xslf?) Mg (x5) = Mg(x3)mg(x2)



Exact inference: variable elimination
Example

» Query: P(X3|X7 = X7)

v P(X,|%,) o P(Xy, )

P(xy, X7)

= D 00D 0 D Pl s e )

X1 X3 Xaq4 X5 Xg Xg

Consider the elimination order X, X5, X4, X5, X¢, Xg

P(Xz,f?)
- Z Z Z Z Z Z ¢(:X3J X_g:)gf)(:xz, Xs)(,f)[:)(:;, X6 f?)ﬁb(:'x@! X5, ‘f?)ﬂb(zf?ﬁ x3)¢(:x11x2:x3:}
Xg Xg X5 X3 X3 X3
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Exact inference: variable elimination
Example

e DI I I IR CAEAICEBTICHENE STIENPHE STICA N IFICHENEN

= Z Z Z Z Z @ (x3,X4) (X2, X5) P (X3, Xg, X7) P (X4, X5, X7) P (X7, X5) M4 (xzfx/sj

ZZZZ D (xz, x5)P (x4, X5, X7) (X7, xs)qu(xg x,) P (x3, X6, X7 )My (X3, X3)
v

- z Z Z Z & (X2, X5) (Xa, X5, B ) (%7, X35 (X2, %6, %)
=D D) D B X e) D By e, By ) (3, X )
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_ Z Z (%7, xs) Z (22, x5)mq (X2, Xs, Xg)

P

- Z Z (X7, xg)Ms(x2, %)
- Z (%7, xg) Z ms (X2, %)

-’ = (Z ¢ (7, %) ) m‘E (2)




Exact inference: variable elimination

» In each elimination step, we need O(k™) computations
where m is the number of variables is the product of
factors containing the variable

k is the size of the largest scope of random variables

» With a system with n random variables, we need 0 (nk™)
computations
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Inference algorithms

» Exact inference:

Variable elimination
Can be applied on any graph
Responds only one query
Message passing

Sum-product
Only for trees

Junction tree
Can be applied on any graph

» In many real-world applications these algorithms are
computationally too complex to be applied
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Inference algorithms

» Approximate inference:
Deterministic approximation <——
Variational inference
Stochastic simulation/sampling methods
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Variational inference

» The calculus of variations (or variational calculus) is a field
of mathematical analysis that uses variations, which are
small changes in functions and functionals, to find
maxima and minima of functionals

Functionals: functions of functions ©

» Variational Bayesian methods are a family of techniques

for approximating intractable integrals arising in Bayesian
inference and machine learning.
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Variational inference

» Generally, consider two sets of random variables in a joint
distribution p:
X: Observed random variables
Z: Latent random variables

calculate p(Z|X)?

X,Z
 p(ZIX) = B2, where p(X) = [ p(X, 2)

We usually have the joint distribution p(X, Z).

However, calculating the marginal distribution p(X) s
interactable.
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Variational inference

» Generally, consider two sets of random variables in a joint
distribution p:
X: Observed random variables
Z: Latent random variables

calculate p(Z|X)?

» Solution: we select a family distribution Q in which the
inference query is tractable. Then we find the best
approximate of p in Q.
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Variational inference

» Solution: we select a family distribution Q in which the
inference query is tractable. Then we find the best
approximate of p in Q.

» Converting inference to optimization over a functional
(variational calculus)
A family distribution Q
A similarity metric between p and g

KL-divergence

mingeq dis(p, q)
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Variational inference

» Kullback-Leibler divergence between two distribution:

KL(p Il q) = f’p(x) log%dx

» This is positive for any two distributions
» KL(p|lg) = 0ifandonlyifp =gq

» It is not symmetric

we call it divergence not distance

20



KL-divergence

» Suppose p is the target distribution we want to
approximate it,

» |-projection: KL(q |l p)
» M-projection: KL(p || q@)

» Obviously, when p&(Q the result of following
optimizations is different

mqin KL(p Il g)
mqin KL(q Il p)

21



KL-divergence

» p is a mixture of gaussian, Q is the family of gaussian
distributions.

M-projection |-projection
min KL(p Il q) min KL(q |l p)




Variational inference

» In variational inference: I-projection
Because of the computational complexity of p.

» We should solve the following optimization to find the best g:

mqin KL(q(Z) I p(Z|X))

B Q( q(Z)P( )
B q(Z)p(X) q(Z)
—jq(Z) log D Z.X) dZ = j (Z) log (Z X dZ+jq(Z) log p(X)dZ

= KL(q(2) I p(Z, X)) + log p(x)
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Variational inference

» KL(q(Z2) I p(Z1X)) = KL(q(Z) | p(Z, X)) + logp(x)

» Two facts:
KL(q(Z) Il p(Z|X)) > 0 — logp(x) > —KL(q(Z) I p(Z, X))

Evidence lower bound (ELBO)

logp(x) <0 - KL(q(2) I p(Z,X)) > KL(q(Z) I p(Z|X))
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Variational inference

» logp(x) <0 - KL(q(Z) | p(Z,X)) > KL(q(Z) Il p(Z]X))

The upper bound

» In variational inference, we minimize the above upper
bound

argngin KL(q(Z) Il p(Z, X))
q€E
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Variational mean filed approximation

» A common type of variational Bayes

Mean-field assumption: the unknown variables can be
partitioned so that each partition is independent of the
others

O O OO
O O OO
O O O O
O O OO0

. g _ Structured
- Original Graph Naive Mean Field Mean Field



Variational mean filed approximation

Naive mean field: the family distribution Q is fully factorized

as follows:
q(Z) = HQi(Zi)

» Variational mean field inference:

argmin KL(q(Z) |l p(Z,X)) = argmin KL(q(Z) |l p(Z, X))
qEQ d1,92,-An
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Variational mean filed approximation

Naive mean field: the family distribution Q is fully factorized

as follows:
q(Z) = nqj(zj)
j

» We iteratively optimizing over one coordinate (factor) at a
time, as follows,

IKL(q(Z)lp(Z,X))
aq]'

= 0 to obtain g;
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Variational mean filed approximation

In variational naive mean field inference, optimum factors
are obtained as follows :

log q; (z) « E4_.[logp(X, Z)]
As each ¢;(z;) depends on others, q_;:
1. We initialize q;s

2. We iteratively update each q}f until convergence!
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Variational mean filed approximation

In variational naive mean field inference, optimum factors
are obtained as follows:

log q; (z) « Eq_.[logp(X,Z)]

» Proof:
B q(Z)
KL(q(2) | p(Z,X)) = jq(Z) logp(Z,X) dZ
YA
= Eg) [108 pc(l)(( ;) = Eq(2) [10861(2)} — Eq2) llogp(X, {)]

I 2
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Variational mean filed approximation
proof cont.

» We know,
q(Z) = HQi(Zi) - logq(Z) = Zlogqi(zi)

» Therefore,
I . Eq(Z) [log CI(Z)] — Zl Eqi(Zi) [lOg Qi (Zi)]

» Also,

2:Eqzllogp(X, 2)] = Eg (2 [Eq_j [logp(X, Z)]
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Variational mean filed approximation
proof cont.

» Therefore,
KL(q(Z) 1 p(Z,X))

- z Eqizpllog qi(z)] — qu(zj) [Eq_j logp(X. Z)]]

» and

0 KL(q(Z) Il p(Z,X))
af q]( )( logp(X Z)] +logq;(z ))dzj+const
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Variational mean filed approximation
proof cont.

» According to “Euler—Lagrange equation” we can write,

0KL(q(2) 1 p(2,X)) 94;(2) (—Eq_,- logp(X,Z)] + log qj(Zj))
0q; B q;

» Remember the goal is:

q; = argminKL(q(2) I p(Z,X))
dj

» Therefore:
d q;(7) (Eq_,- [logp(X,Z)] —logq, (Zj))
[—) log g} (z) = Eq_,[logp(X,2)] + const]
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Inference algorithms

» Approximate inference:
Deterministic approximation
Variational inference
Stochastic simulation/sampling methods <«——
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Sampling based approximation

» Consider the following set of i.i.d. samples from the
distribution p(x):
D = {x1,x%, ..., x™}

Monte Carlo method: for an arbitrary function f(x) of
random variable x, we can estimate E,[f] as follows

(empirical expectation),

IO
Eplf] =~ ) fx)
=1
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Sampling based approximation

Monte Carlo method: for an arbitrary function f(x) of
random variable x, we can estimate E,[f] as follows

(empirical expectation),

IV~
Ep[f] ZEZf(xl)
i—1

» Marginal probability: p(x; = k) » f =1(x; = k)
» Mean of a distribution: f = x
> ...

36



Forward sampling in a BN

Given a BN, and number of samples N
Choose a topological order on variables: x4, x5, ..., Xy,
Fori =1to N
Forj=1toM
Sample xj" from the distribution p(x; |parent(xj))

Add {x{, xé, e x,‘\,,} to the sample set

37



Forward sampling in a BN

» Sample D fromp(D)

» Sample I from p(I)

» Sample G fromp(G|D,I)
» Sample S fromp(S|I)

» Sample L fromp(L|G) AT
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Forward sampling in a BN

» Problems:

When the evidence rarely happens, we would need lots of
samples, and most would be wasted

Overall probability of accepting a sample rapidly decreases
when the number of observed variables and states that those
variables can take increases

This approach is very slow and rarely used in practice.
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Importance sampling

» When sampling from the target distribution p is hard, we use a
proposal distribution g

g should dominates p —» ¢g(x) > 0 whenever p(x) > 0

» We sample from the proposal distribution g and consider a
weight for each sample:

3 p(x)
fl=[rop@ar = | r@E5aw a
1o ., (e |
Eplf] == ) f(x') Zgg X! ~ q(x)
=1

1% . i
=2y W we =2

=1
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Importance sampling

» Importance sampling depends on how well g matches p.

For mismatch distributions, weights may be dominated by few
samples having large weights, with the remaining weights
being relatively insignificant
» It is common that P(x)f(x) is strongly varying and has a
significant proportion of its mass concentrated in a small
region
The problem is more severe if none of the samples falls in the
regions where P(x)f(x) is large.

41 -/
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Problems of naive Monte Carlo method

» Direct sampling: only when we can sample from p(x)
Wasteful for rare evidences

» Importance sampling: when the proposal g(x) is very
different from p(x) most samples have very low weights.

In fact, finding a good proposal g(x) that is similar to
p(x) usually requires knowledge of the analytic form of
p(x) that is not available

42



Markov chain Monte Carlo (MCMC)

» Using an adaptive distribution g(x’|x) instead of a fixed
distribution g(x), where x is the last accepted sample
and x' is the new sample.

During sampling process the proposal distribution changes as a
function of previous sampled data

Importance sampling with MCMC with adaptive
a (bad) proposal Q(x) proposal Q(X'|x)

Bishop Book



Markov chain Monte Carlo (MCMC)

» Different methods
Metropolis-Hastings +——
Gibbs sampling

44



Markov chain Monte Carlo (MCMC)

» Metropolis-Hastings
Sample from g(x'|x), where x is the previous sample
As x changes, g(x'|x) can also change
Accept this new sample with following probability

[p(x,)/CI(x,|X) importance

A = minCh S 6o q e

The acceptance rate A(x'|x) guarantees that after sufficiently
many draws, samples are generated from the target
distribution p(x)

Burn-in samples: samples generated in initial iterations and are not
from p(x)
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Markov chain Monte Carlo (MCMC)

Metropolis-Hastings algorithm:
Initialize starting point: x° , set t=0
Repeat until convergence:

Sample x* «~ q(x*|x)

Burn-in samples

p(x')/q(x|x)
p(x)/q(x|x)
Sample u ~ uniform (0,1)

Ifu < A(x*|x):
t+1

A(x*|x) = min(1,

)

X =x"

Else:

AL ot

Discard Burn-in samples

46




Markov chain Monte Carlo (MCMC)

» Metropolis-Hastings example:
The proposal distribution g(x'|x) is a gaussian distribution
The true distribution p(x) is a bimodal with two peaks!

Initialize x(@

P(x)

Q(x|x9)

47
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Markov chain Monte Carlo (MCMC)

» Metropolis-Hastings example:

Initialize x(®
Draw, accept x'

48
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Markov chain Monte Carlo (MCMC)

» Metropolis-Hastings example:

Initialize x©
Draw, accept x’
Draw, accept x?

P(x)

Q(x3|x")
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Markov chain Monte Carlo (MCMC)

» Metropolis-Hastings example:

Initialize x©@
Draw, accept x’

Draw, accept x?
Draw but reject; set x3=x2

P(x)

Q(x3|x?)

e o o o
X' xi X' (rejected)
X

50 JinYoung Choi - SNU



Markov chain Monte Carlo (MCMC)

» Metropolis-Hastings example:

o We reject because P(x')/P(x?) is very small,
Initialize x© hence A(X'|x?) is close to zero!

Draw, accept x'

Draw, accept x2 P(x)
Draw but reject; set x3=x?

e o o
x* x* xi X' (rejected)
X
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Markov chain Monte Carlo (MCMC)

» Metropolis-Hastings example:

The adaptive proposal Q(x'|x) allows

I[r;itialize x{® i us to sample both modes of P(x)!
raw, accept x

Draw, accept x? P(x)

Draw but reject; set x3=x2

Draw, accept x*

Draw, accept x*

92 JinYoung Choi - SNU



Next topic

» Probabilistic graphical models
Learning
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