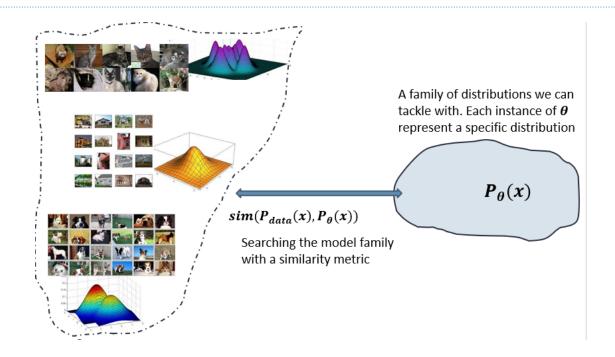
Probabilistic graphical models Learning from data

22-808: Generative models Sharif University of Technology Fall 2025

Fatemeh Seyyedsalehi

Recap



- We need a framework to interact with distributions for statistical generative models.
 - Probabilistic generative models
 - Representation Inference and Sampling Learning (today)
 - Deep generative models

Learning in PGMs

- lacktriangle Let's assume that the real data is generated from a distribution p_{data}
 - A set of independent, identically distributed (i.i.d.) training samples, $\mathcal{D} = \{x^1, x^2, ..., x^n\}$ is available.
 - ▶ Each sample is an assignment of values to (a subset of) the variables, e.g. pixel intensities.

- We are also given a family of models p_{θ} , and our task is to learn some "good" distribution in this set
 - For example, p_{θ} could be all Bayes nets with a given graph structure, for all possible choices of the CPDs

Learning in PGMs

We want to learn the full distribution so that later we can answer any probabilistic inference query

- Learning in PGMs
 - ▶ Parameter learning ← —
 - Learning parameters of potential functions and conditional probability distributions (CPDs)
 - Structure learning
 - For fixed nodes, learning edges!

Learning in PGMs Parameter learning

- Given a set of i.i.d. training samples $\mathcal{D} = \{x^1, x^2, ..., x^n\}$, the goal is learning parameters of factors, i.e. CPDs and potentials.
 - We assume that the structure of the graphical model is known.
 - Each sample $x^i = [x_1^i, x_2^i, ..., x_m^i]$ is a vector of random variables in the graph.
 - First, we assume data is completely observed
- A parametric density estimation problem
 - p_{θ} is described in terms of a specific functional form which has a number of adjustable parameters

Learning in PGMs

- Density estimation techniques:
 - ▶ MLE: maximum likelihood estimation ← —
 - Bayesian estimators: needs a prior distribution on parameters
 - Maximum a posteriori (MAP)
 - Full Bayesian estimator

Learning with MLE: maximum likelihood estimation

- The goal of learning is to return a model p_{θ} that precisely captures the distribution p_{data} from which our data was sampled .
- This is in general not achievable because of limited data only provides a rough approximation of the true underlying distribution.
- We want to select p_{θ} to construct the **best** approximation to the underlying distribution p_{data} .
- What is best?

Learning with MLE: maximum likelihood estimation

Kullback-Leibler (KL) divergence to measure the distance between two distributions:

$$KL(p_{data} \parallel p_{\theta}) = \int p_{data} \log \frac{p_{data}}{p_{\theta}} dx$$
$$= E_{p_{data}} [\log p_{data}] - E_{p_{data}} [\log p_{\theta}]$$

lacktriangle As the first term does not depend on $p_{ heta}$, we have,

$$\underset{p_{\theta}}{\operatorname{argmin}} KL(p_{data} \parallel p_{\theta}) = \underset{p_{\theta}}{\operatorname{argmin}} - \operatorname{E}_{p_{data}} [\log p_{\theta}] = \underset{p_{\theta}}{\operatorname{argmax}} \operatorname{E}_{p_{data}} [\log p_{\theta}]$$

ho should assign high probability to instances sampled from p_{data} to decrease the loss function.

Learning with MLE: maximum likelihood estimation

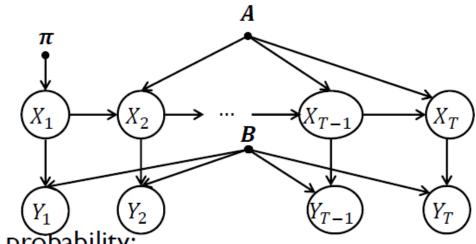
- Monte Carlo Estimation
 - Approximate the expected log-likelihood

$$E_{p_{data}}[\log p_{\theta}] = \int p_{data}(x) \log p_{\theta}(x) \ dx = \frac{1}{N} \sum_{i=1}^{N} \log p_{\theta}(x^{i})$$

$$\underset{p_{\theta}}{\operatorname{argmax}} E_{p_{data}}[\log p_{\theta}] = \underset{p_{\theta}}{\operatorname{argmax}} \frac{1}{N} \sum_{i=1}^{N} \log p_{\theta}(x^{i})$$

Example

MLE for HMM – completely observed data



Initial state probability:

$$\pi_i = P(X_1 = i), \qquad 1 \le i \le K$$

State transition probability:

$$A_{ji} = P(X_{t+1} = i | X_t = j), \qquad 1 \le i, j \le K$$

State transition probability:

$$B_{ik} = P(Y_t = k | X_t = i), \qquad 1 \le k \le M$$

Example

MLE for HMM – completely observed data

$$P(\mathcal{D}|\boldsymbol{\theta}) = \prod_{n=1}^{N} \left[P\left(X_{1}^{(n)} \middle| \boldsymbol{\pi}\right) \prod_{t=2}^{T} P(X_{t}^{(n)} | X_{t-1}^{(n)}, \boldsymbol{A}) \prod_{t=1}^{T} P(Y_{t}^{(n)} | X_{t}^{(n)}, \boldsymbol{B}) \right]$$

$$\hat{A}_{ji} = \frac{\sum_{n=1}^{N} \sum_{t=2}^{T} I\left(X_{t-1}^{(n)} = j, \ X_{t}^{(n)} = i\right)}{\sum_{n=1}^{N} \sum_{t=2}^{T} I\left(X_{t-1}^{(n)} = j\right)}$$

$$\hat{\pi}_i = \frac{\sum_{n=1}^N I\left(X_1^{(n)} = i\right)}{N}$$

$$\hat{B}_{ik} = \frac{\sum_{n=1}^N \sum_{t=1}^T I\left(X_t^{(n)} = i, \ Y_t^{(n)} = k\right)}{\sum_{n=1}^N \sum_{t=1}^T I\left(X_t^{(n)} = i\right)}$$
 Discrete observations

Example from Soleymani pgm-sharif

Learning from Incomplete data

- Now, we assume data is not completely observed
- Given a set of i.i.d. training samples $\mathcal{D} = \{x^1, x^2, ..., x^n\}$, the goal is learning parameters of factors (CPDs and potentials).
 - We assume that the structure of the graphical model is known.
 - Each sample $x^i = [x_O^i, x_H^i]$ is a vector that **some of its** elements are latent/hidden/unknown.
 - We assume a specific set of random variables are latent in all samples

Learning from Incomplete data

- Complete likelihood
 - Maximizing likelihood $p_{\theta}(\mathcal{D}; \boldsymbol{\theta})$ for labeled data is straightforward
- Incomplete likelihood
 - Our objective becomes

$$p_{\theta}(\mathcal{D}; \boldsymbol{\theta}) = p_{\theta}(x_{O}; \boldsymbol{\theta}) = \sum_{\mathcal{H}} p(x_{O}, x_{\mathcal{H}}; \boldsymbol{\theta})$$

- Incomplete likelihood is the sum of likelihood functions, one for each possible joint assignment of the missing values.
- The number of possible assignments is exponential in the total number of latent variables.

EM algorithm

- General algorithm for finding MLE when data is incomplete (missing or unobserved data).
- An iterative algorithm in which each iteration is guaranteed to improve the log-likelihood function
- When hidden data, \mathcal{H} is relevant to observed data \mathcal{D} (in any way), we can hope to extract information about it from \mathcal{D} assuming a specific parametric model on the data.

Expectation-maximization (EM) method

X: observed variables

Z: unobserved variables

 θ : parameters

Expectation step (E-step): Given the current parameters, find soft completion of data using probabilistic inference

Maximization step (M-step): Treat the soft completed data as if it were observed and learn a new set of parameters

Choose an initial setting θ^0 , t=0

Iterate until convergence:

E Step: Use X and current θ^t to calculate $P(Z|X, \theta^t)$

M Step: $\theta^{t+1} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} E_{Z \sim P(Z|X, \boldsymbol{\theta}^t)}[\log p(X, Z|\boldsymbol{\theta})]$

 $t \leftarrow t + 1$

expectation of the log-likelihood evaluated using the current estimate for the parameters $m{ heta}^t$

$$E_{Z \sim P(Z|X, \boldsymbol{\theta}^{\text{old}})}[\log p(X, Z|\boldsymbol{\theta})]$$

$$= \sum_{Z} P(Z|X, \boldsymbol{\theta}^{\text{old}}) \times \log p(X, Z|\boldsymbol{\theta})$$

EM theoretical foundation

Remember this equation from the last lecture

$$KL(q(Z) \parallel p(Z|X)) = KL(q(Z) \parallel p(Z,X)) + \log p(X)$$

We have:

$$KL(q(Z) \parallel p(Z|X)) \ge 0 \to \log p(X) \ge -KL(q(Z) \parallel p(Z,X))$$
$$\to q(Z) = p(Z|X) \to \log p(X) = -KL(q(Z) \parallel p(Z,X))$$

In **E-step** we set q(Z) equal to p(Z|X), therefore in the M-step we can maximize $-KL(q(Z) \parallel p(Z,X))$ instead of $\log p(X)$:

$$\underset{\theta}{\operatorname{argmax}} \log p(x; \theta) = \underset{\theta}{\operatorname{argmax}} \operatorname{E}_{p(Z|X)}[p(Z|X)] - \operatorname{E}_{p(Z|X)}[p(Z, X; \theta)]$$

The first term is fixed in the E-step and int the M-step is independent of θ , therefore in the maximization step we only maximize the second term:

$$\underset{\theta}{argmax} - E_{p(Z|X)}[p(Z,X;\theta)]$$