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Recap

 We need a framework to interact with distributions for statistical
generative models.
 Probabilistic generative models

 Representation – Inference and Sampling – Learning (today)

 Deep generative models
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Learning in PGMs

 Let's assume that the real data is generated from a
distribution 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
 A set of independent, identically distributed (i.i.d.) training

samples, 𝒟𝒟 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛} is available.
 Each sample is an assignment of values to (a subset of) the

variables, e.g. pixel intensities.

 We are also given a family of models 𝑝𝑝𝜃𝜃, and our task is to
learn some “good” distribution in this set
 For example, 𝑝𝑝𝜃𝜃 could be all Bayes nets with a given graph

structure, for all possible choices of the CPDs
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Learning in PGMs

 We want to learn the full distribution so that later we can
answer any probabilistic inference query

 Learning in PGMs
 Parameter learning

 Learning parameters of potential functions and conditional
probability distributions (CPDs)

 Structure learning
 For fixed nodes, learning edges!

4



Learning in PGMs
Parameter learning

 Given a set of i.i.d. training samples 𝒟𝒟 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛},
the goal is learning parameters of factors, i.e. CPDs and
potentials.
 We assume that the structure of the graphical model is known.
 Each sample 𝑥𝑥𝑖𝑖 = [𝑥𝑥1𝑖𝑖 , 𝑥𝑥2𝑖𝑖 , … , 𝑥𝑥𝑚𝑚𝑖𝑖 ] is a vector of random

variables in the graph.
 First, we assume data is completely observed

 A parametric density estimation problem
 𝑝𝑝𝜃𝜃 is described in terms of a specific functional form which has

a number of adjustable parameters
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Learning in PGMs

 Density estimation techniques:
 MLE: maximum likelihood estimation
 Bayesian estimators: needs a prior distribution on parameters

 Maximum a posteriori (MAP)
 Full Bayesian estimator
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Learning with MLE: maximum likelihood estimation

 The goal of learning is to return a model 𝑝𝑝𝜃𝜃 that precisely
captures the distribution 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 from which our data was
sampled .

 This is in general not achievable because of limited data
only provides a rough approximation of the true
underlying distribution.

 We want to select 𝑝𝑝𝜃𝜃 to construct the best approximation
to the underlying distribution 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑.

 What is best?
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Learning with MLE: maximum likelihood estimation

 Kullback-Leibler (KL) divergence to measure the distance between two
distributions:

𝐾𝐾𝐾𝐾 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∥ 𝑝𝑝𝜃𝜃 = �𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log
𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑝𝑝𝜃𝜃

𝑑𝑑𝑑𝑑

= Ε𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − Ε𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log 𝑝𝑝𝜃𝜃

 As the first term does not depend on 𝑝𝑝𝜃𝜃, we have,

argmin
𝑝𝑝𝜃𝜃

𝐾𝐾𝐾𝐾(𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∥ 𝑝𝑝𝜃𝜃) = argmin
𝑝𝑝𝜃𝜃

−Ε𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log 𝑝𝑝𝜃𝜃 = argmax
𝑝𝑝𝜃𝜃

Ε𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log 𝑝𝑝𝜃𝜃

 𝑝𝑝𝜃𝜃 should assign high probability to instances sampled from 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 to
decrease the loss function.
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Learning with MLE: maximum likelihood estimation

 Monte Carlo Estimation
 Approximate the expected log-likelihood

Ε𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log 𝑝𝑝𝜃𝜃 = �𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑥𝑥 log 𝑝𝑝𝜃𝜃 𝑥𝑥 𝑑𝑑𝑑𝑑 =
1
𝑁𝑁
�
𝑖𝑖=1

𝑁𝑁

log 𝑝𝑝𝜃𝜃(𝑥𝑥𝑖𝑖)

argmax
𝑝𝑝𝜃𝜃

Ε𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log 𝑝𝑝𝜃𝜃 = argmax
𝑝𝑝𝜃𝜃

1
𝑁𝑁
∑𝑖𝑖=1𝑁𝑁 log 𝑝𝑝𝜃𝜃(𝑥𝑥𝑖𝑖)
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Example
MLE for HMM – completely observed data

10 Example from Soleymani pgm-sharif



Example
MLE for HMM – completely observed data
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Example from Soleymani pgm-sharif



Learning from Incomplete data

 Now, we assume data is not completely observed
 Given a set of i.i.d. training samples 𝒟𝒟 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛},

the goal is learning parameters of factors (CPDs and
potentials).
 We assume that the structure of the graphical model is known.
 Each sample 𝑥𝑥𝑖𝑖 = [𝑥𝑥𝑂𝑂𝑖𝑖 , 𝑥𝑥𝐻𝐻𝑖𝑖 ] is a vector that some of its

elements are latent/hidden/unknown.
 We assume a specific set of random variables are latent in all

samples
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Learning from Incomplete data

 Complete likelihood
 Maximizing likelihood 𝑝𝑝𝜃𝜃(𝒟𝒟; 𝜽𝜽) for labeled data is straightforward

 Incomplete likelihood
 Our objective becomes

𝑝𝑝𝜃𝜃 𝒟𝒟; 𝜽𝜽 = 𝑝𝑝𝜃𝜃(𝑥𝑥𝑂𝑂; 𝜽𝜽) = �
ℋ

𝑝𝑝(𝑥𝑥𝑂𝑂, 𝑥𝑥ℋ; 𝜽𝜽)

 Incomplete likelihood is the sum of likelihood functions, one
for each possible joint assignment of the missing values.

 The number of possible assignments is exponential in the total
number of latent variables.
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EM algorithm

 General algorithm for finding MLE when data is
incomplete (missing or unobserved data).

 An iterative algorithm in which each iteration is
guaranteed to improve the log-likelihood function

 When hidden data, ℋ is relevant to observed data 𝒟𝒟 (in
any way), we can hope to extract information about it
from 𝒟𝒟 assuming a specific parametric model on the data.
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Expectation-maximization (EM) method

𝑋𝑋: observed variables

𝑍𝑍: unobserved variables

𝜽𝜽: parameters
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Expectation step (E-step): Given the current parameters, find 
soft completion of data using probabilistic inference

Maximization step (M-step): Treat the soft completed data 
as if it were observed and learn a new set of parameters  

Choose an initial setting  𝜽𝜽0, 𝑡𝑡 = 0
Iterate until convergence:

E Step: Use 𝑋𝑋 and current 𝜽𝜽𝑡𝑡 to calculate 𝑃𝑃(𝑍𝑍|𝑋𝑋, 𝜽𝜽𝑡𝑡)
M Step: 𝜽𝜽𝑡𝑡+1 = argmax

𝜽𝜽
𝐸𝐸𝑍𝑍~𝑃𝑃(𝑍𝑍|𝑋𝑋,𝜽𝜽𝑡𝑡) log 𝑝𝑝(𝑋𝑋, 𝑍𝑍|𝜽𝜽)

𝑡𝑡 ← 𝑡𝑡 + 1
expectation of the log-likelihood evaluated using 

the current estimate for the parameters 𝜽𝜽𝑡𝑡
𝐸𝐸𝑍𝑍~𝑃𝑃(𝑍𝑍|𝑋𝑋,𝜽𝜽old) log 𝑝𝑝(𝑋𝑋, 𝑍𝑍|𝜽𝜽)

= ∑𝑍𝑍 𝑃𝑃(𝑍𝑍|𝑋𝑋𝑋𝜽𝜽old) × log 𝑝𝑝(𝑋𝑋𝑋𝑋𝑋|𝜽𝜽)



EM theoretical foundation

 Remember this equation from the last lecture
𝐾𝐾𝐾𝐾 𝑞𝑞(𝑍𝑍) ∥ 𝑝𝑝(𝑍𝑍|𝑋𝑋) = 𝐾𝐾𝐾𝐾 𝑞𝑞 𝑍𝑍 ∥ 𝑝𝑝 𝑍𝑍, 𝑋𝑋 + log 𝑝𝑝(𝑋𝑋)

 We have:
𝐾𝐾𝐾𝐾 𝑞𝑞(𝑍𝑍) ∥ 𝑝𝑝(𝑍𝑍|𝑋𝑋) ≥ 0 → log 𝑝𝑝(𝑋𝑋) ≥ −𝐾𝐾𝐾𝐾 𝑞𝑞 𝑍𝑍 ∥ 𝑝𝑝 𝑍𝑍, 𝑋𝑋
→ 𝒒𝒒 𝒁𝒁 = 𝒑𝒑 𝒁𝒁 𝑿𝑿 → 𝒍𝒍𝒍𝒍𝒍𝒍𝒑𝒑(𝒙𝒙) = −𝑲𝑲𝑲𝑲 𝒒𝒒 𝒁𝒁 ∥ 𝒑𝒑 𝒁𝒁,𝑿𝑿

 In E-step we set 𝑞𝑞 𝑍𝑍 equal to 𝑝𝑝 𝑍𝑍 𝑋𝑋 , therefore in the M-step we can
maximize −𝐾𝐾𝐾𝐾 𝑞𝑞 𝑍𝑍 ∥ 𝑝𝑝 𝑍𝑍, 𝑋𝑋 instead of log 𝑝𝑝(𝑋𝑋) :

argmax
𝜃𝜃

log 𝑝𝑝 𝑥𝑥; 𝜃𝜃 = argmax
𝜃𝜃

Ε𝑝𝑝 𝑍𝑍 𝑋𝑋 𝑝𝑝 𝑍𝑍|𝑋𝑋 − Ε𝑝𝑝 𝑍𝑍|𝑋𝑋 𝑝𝑝 𝑍𝑍, 𝑋𝑋; 𝜃𝜃

 The first term is fixed in the E-step and int the M-step is independent of 𝜃𝜃,
therefore in the maximization step we only maximize the second term:

𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂
𝜽𝜽

− 𝜠𝜠𝒑𝒑 𝒁𝒁|𝑿𝑿 𝒑𝒑 𝒁𝒁,𝑿𝑿; 𝜽𝜽
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