Autoregressive models

22-808: Generative models
Sharif University of Technology
Fall 2025

Fatemeh Seyyedsalehi

Recap

A family of distributions we can
5 tackle with. Each instance of @

R o B3 D ’ represent a specific distribution
B [§ #
(i] |
=k 21PN

n--ﬂ-mn o Sim(Pqta(%), Po(x))
1
en LB . e 7 ! Searching the model family
BRVIDERS | with a similarity metric

nram-mn

» We need a framework to interact with distributions for statistical generative
models.

Probabilistic generative models
Representation — Inference — Sampling — Learning
Intro. to causal modeling

Deep generative models

Autoregressive models

First family of models we talk about

PGMs Vs. Deep neural networks

» Chainrule

p(x1.X2,Xx3,x4) = p(x1)p(x2 | x1)p(x3 | X1.X2)p(Xa | X1.X2.X3)

» PGMS
Assumes conditional independencies

p(x1.X2.X3,X3) = pcpT(X1)pcpT(X2 | X1)PcpT(X3 |}¢1’- X2)pcpT(Xa | X1. X0%7)

» Neural networks

Assumes specific functional form for the conditionals. A
sufficiently deep neural net can approximate any function.

p(X1.X2,X3,X3) = p(X1)p(X2 | X1)PNeural(X3 | X1.X2)PNeural(Xa | X1, X2. X3)

3

Deep neural networks for classification

» Binary classification

We want to find
p(Y =1|xa)="f(x,a)

Logistic regression n
& 8 z(a,x) = g + D iy QiX

pogit(Y = 1| x;) = o(z(ax,x)), where o(z) =1/(1 + e %)

Neural networks h(A, b, x)
More flexible pewral(Y = 1| x; 0, A, b) = o(ag + 31, ash))
More parameters: A, b,a)
Repeat multiple times to get a multilayer

perceptron (neural network) @ 0 -ixa)

Autoregressive models

» We can pick an ordering of all the random variables
Ordering of pixels in an image

» Without loss of generality, we can use chain rule for
factorization

p(X1s -+ s x78a) = p(x1)p(xe | x1)p(x3 | x1,%2) ==~ p(Xn | X1+ s Xn—1)

» We assume some parametric functions for CPDs

p(x1, -+ .X784) = pcpT(X1; i'l'l)Plogit(Xz | X1, az)Plogit.(XE | X1, X2, (13) e

. oon
Plogit(xn | X1y s Xp—1, X)

-] PCPT(Xl = 1;('1-1) = ('1.1, p(Xl =

o Plogit(Xo = 1| x1;a?) = o(a3 + aix

o Plogit(X3 = 1| x1.x2;) = o(ad + alx; + adx)

Fully Visible Sigmoid Belief Network (FVSBN)

» Each variable is a binary random variable given others

» How to evaluate a joint probability

P(Xl :O,X2:1,X3:].X4:D): (1—/‘?1) X >?2 X}?3X (1—5‘(4)
=(1-%)x%0(X1=0)xX(X1=0,X2=1)x (1 —X%(X1=0X2=1,X3 =1))

» How to sample

© Sample X; ~ p(x7) (np.random.choice([1,0],p=[%,1 —x1))
5 @ Sample X, ~ p(xz | x1 = X1)
© Sample X3 ~ p(x3 | X1 =X1.% =X5) -+

Fully Visible Sigmoid Belief Network (FVSBN)

) M\t @
Tal 2l

PoitN
b
X T%?

X
ey
-

fa

S
¢

F

®%

&
-
L3
L J

Ll
% \d
s
e

Training data on the left (Caltech 101 Silhouettes). Samples from the
model on the right.

Figure from Learning Deep Sigmoid Belief Networks with Data
Augmentation, 2015.

7

NADE: Neural Autoregressive Density Estimation

» To increase the power of the model we use neural
networks instead of logistic regression

hi = o(Aix<; +¢;) @@Q Q
Xi = p(xi|xq, - .X;_l;:/-\;. Cj. (v}, bi) = o(ah; + b;)

parameters
» O(n) parameters with parameter sharing by | [|| s || B
/
N /Y
hy = o W1 xi+c|hs=0 (wlm}(ié) hy = o (wlwzm](%) / ‘
U ¥ S, (=) () (=)
W., <2 W. <3 W< NADE

NADE results

Samples from a model trained on MNIST on the left. Conditional

probabilities X; on the right.

Figure from The Neural Autoregressive Distribution Estimator, 2011

General discrete distributions

» Model non-binary discrete random variables
Pixels from 0 — 255

» Imagine a categorical distribution

h = o(W. <ix<i +¢)
p(xi|x1, -+ .xi—1) = Cat(pj, - .p;)
Xi=(pj. - pf{) — softmax(A;h; + b;)

» Softmax operator

softmax(a) = softmax(a~,--- .a

)= (2 exp(a*f),)

10

RNADE

» Modeling continues random variables, e.g. speech signals
by estimating the parameters of their distributions

For example, a mixture of k gaussians

K

1.

p(xilxt, -+ Xi—1) = ZRN (xi; 55 0;)
j=1

11

Autoregressive models vs. autoencoders

» It seems they are like to each other.

Autoencoder

» However, a vanilla autoencoder is not a generative model:
it does not define a distribution over x we can sample
from to generate new data points.

12

MADE: Masked Autoencoder for Distribution
Estimation

plx;)
playlxz.x3) plxglxs)

Autoencoder X Masks

» Challenge: An autoencoder that is autoregressive

@ Solution: use masks to disallow certain paths (Germain et al., 2015).
Suppose ordering is X2, X3, x1, 50 p(x1,Xx2,x3) = p(x2)p(x3 | x2)p(x1 | X2, x3).

@ The unit producing the parameters for X, = p(xz) is not allowed to
depend on any input. Unit for p(x3|x2) only on x,. And so on...

@ For each unit in a hidden layer, pick a random integer 7 in [1,n — 1].
That unit is allowed to depend only on the first / inputs (according to
the chosen ordering).

©® Add mask to preserve this invariant: connect to all units in previous

13 layer with smaller or equal assigned number (strictly < in final layer)

RNN: Recurrent neural nets

» Main challenge of autoregressive models up to now:

History gets longer !!! p(Xr\XLr—l; (xt)

» RNN propose to keep a summary and recursively update
it

Summary update rule: = tanh(Wpph, + Wipxei1)
Prediction: o;r1 = W,
Summary initalization: hg = by

14

RNN: Recurrent neural nets

» Example: imagine an alphabets with 4 letter

O n e_ h Ot e n CO d I n g target chars: “e” 5 i ok o
1.0 0.5 0.1 0.2
2.2 0.3 0.5 -1.5
outputiayer B 1.0 1.9 0.1
4.1 1.2 1.1 2.2
A
I | ALY
0.3 1.0 0.1 |w hh|-0-3
hidden layer | -0.1 0.3 05— 0.9
0.9 0.1 -0.3 0.7
[R R
1 0 0 0
: 0 1 0 0
|
input layer 0 0 1 1
0 0 0 0
input chars: “h” ol | Sz

Autoregressive: p(x = hello) = p(x; = h)p(x2 = e|xy = h)p(x3 =
l[[x1; =h.xo =€) - p(xs =olx1 = h.xo =e,x3 = l.xq4 =)

exp(2.2)

p(x2 =elxy = h) = softmax(o;) = exp(1.0) +--- +exp(4.1)

01 = Why hl

19 hy = tanh(Winho + Wipxy)

RNN: Recurrent neural nets

» Can be applied to sequences of arbitrary length, and are very
general: For every computable function, there exists a finite RNN

window

that can compute it. i

Why
h(©) h‘l h]Jl hi‘: hll‘
B Wm,‘E] WM,E Whh)@ VVM'E|
o o -

xh xh Wik
e

» Issues: m

Requires an ordering. "

0000
2 0000
0000

d

5

A single hidden vector needs to summarize all the (growing) history.

They have sequential likelihood evaluation (very slow for training)
and sequential generation (unavoidable in an autoregressive model)
that can not be parallelized

Exploding/vanishing gradients when accessing information from
many steps back

16

PixelRNN

» Using RNN variants for generating images.
» We need an ordering assumption on pixels

An issue

» We also should consider an ordering for 3 channels: red,
green and blue.

p(xe | xte—1) = p(xr% | x1:6—1) p(xE" | x1:e—1. x2%) p(XF™ | X1:6—1, X159, x5

Mask B

Mask A
Context R G B

17

PixelRNN

» Results on down sampled ImageNet.
» Very slow: sequential likelihood valuation.

occluded completions original

18

PixelCNN

» Use convolutional architecture to predict next pixel given
context (a neighborhood of pixels). I
Has to be autoregressive. T

Causal CNN
Masked convolutions preserve raster scan or

Additional masking for colors order.

OO0 0OO0O0
COQO0OO0
OO @ OO masked convolution

<+ .-~ Blind spot
11010 ﬁ

19

PixelCNN

» Samples from the model trained on Imagenet (32 x 32

pixels).

» Similar performance to PixelRNN, but much faster.

20

@.k.nﬂﬁhﬂl
ﬁ VP i‘
AF Eﬁ!ﬂﬂh“é
‘“.Ei-ﬁgﬁﬁ

b PN P e
mﬁlﬂﬁw@lﬂm

YRS, plil-E e
ﬂilﬂW&QIlﬁ
=I5 & Gy B e sl

Adversarial attack and anomaly detection

» Machine learning methods are vulnerable to adversarial
examples.
» When a model can compute the likelihood function, we
can use it for anomaly detection.
Corrupted images may have less likelihood

+noise

21
+noise ostrich

PixelDefend

» Train a generative model p(x) on clean inputs (PixelCNN)
» Given a new input x, evaluate p(x)
» Adversarial examples are significantly less likely under

p(x)

Densities of Adversarial Examples

clean(train)
clean(test)
RAND
FGSM

BIM

1.0 DeepFool
Ccw

2.0

1.5

Density

0.5

0.0
0 1 2 3 R 5] 6

Bits per dimension

22

Attention mechanism

» Compare current hidden state () to all past hidden states
(keys), e.g., by taking a dot product.

» Construct attention distribution

to figure out what parts of the history

are relevant, e.g., via a Softmax.

» Construct a summary of the .

history, e.g., by weighted sum. Dton

» Use summary and current hidden

Similarity

state to predict next token/word.

23
My friend opened the door

Transformer

Attention Is All You Need
Ashish Vaswani* Noam Shazeer” Niki Parmar” Jakob Uszkoreit”
Google Brain Google Brain Google Research Google Research

avaswani@poogle.com noam@google.com nikip@google.com usz@google.com

Llion Jones* Aidan N. Gomez*® Fukasz Kaiser*
Google Research University of Toronto Google Brain
1lion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Illia Polosukhin® *
illia.polosukhin@gmail .com

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. M., ... & Polosukhin, 1. (2017).
Attention is all you need. In Advances in neural information processing systems (pp. 5998-6008).

https://arxiv.org/abs/1706.03762

24

Transformer

» Current state of the art (GPTs): replace RNN with
Transformer.

» Avoid recursive computation. Use only self-attention to
enable parallelization.

» Needs masked self-attention to preserve autoregressive
structure.

» Demo:

https://transformer.huggingface.co/doc/gpt2-large

https://huggingface.co/spaces/huggingface-projects/llama-2-
13b-chat

25

Transformer

» Attention mechanisms were introduced to give access to
all sequence elements at each time step and adaptively
focus only on relevant context

Can handle longer sequences compared to RNNs.

Can you me help this sentence to translate

P A

Kannst du mir helfen diesen Satz zu uebersetzen ?

Can you help me to translate this sentence

| 1 X

Kannst du mir helfen diesen Satz zu uebersetzen ?

26

Transformer

Output
Probabilities
The scaled dot-product attention
mechanism is used in the
multi-head attention blocks)
Feed
Forward
. \ /
Feed Attention
Forward Nx
—
N
\ S— Masked
i Multi-Head Multi-Head
Attention Attention
t I,
o J N —
Positional & @ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

27

Self-attention in transformers

» In each timestep, we compose 3 vectors from the input
Query M

< W, q

€y (1) I
x % kW

Value W, yD

» These vectors are obtained with

W, ~ | g%

shared parameters W,, W, W, [x® 6 e}
k

W [@)

= s
3| 3

A ® = Wq G
0 %
= k
W)

https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html

28

Self-attention in transformers

» Now, we compute

unnormalized attention W, . [q® 7@ 40
weights for each time step. x® 6 kD ;
W, p(D @31

Current input ("query”)

W, g@ | q(z)T K@ |
) % @ }
X k
k
Wv v(Z) m‘?"z

" B = T
W, gD g®|| k™|
xD > | gD }
@
W [2.T

v

29

https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html

Self-attention in transformers

» The subsequent step is to normalize the unnormalized attention
weights w, to obtain the normalized attention weights

Scaling by dj, dimension of key vectors, avoids the attention weighs to
become to large or too small

(@I %]
}
W, P _wz,]
: 0] |
i E . where a,; = softmax i
[4?] 1@ Vd,
Current input ("query") | | (1’:2‘] |
W, q? @; 5
[x®| < [&®
W, V(z)
.
@ g™
*
W, [¢@ |m2’T| /
x@ > [@ |
0 " o)

https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html

Self-attention in transformers

» In the last step, the context vector z; is obtained as an
attention-weighted version of the input x;

g?|| k® Note that the attention scores are
¢ specific to the current input token
W, g @, P :
|
£ % kD N
W, (n
v
e e
Current input ("query”) . . zrl\.
W, qﬂ] Ct)z‘z \ T ‘
@] - [k@ | T, [z®] where z? = Z p)
W, p@ / J=1
A /
.l L ﬂz,:r]
a)z'T L&

Multi-head attention

» A set of three matrices query, key, and value are
considered as a single attention head in the context of
multi-head attention.

d,

LScaled-dnt-pmduct aﬁenticn}—p z(z]

‘ \ ‘ Context vector

2
Y had m— d,)
d
! K V
x@ viax® viaX via X
e and W and W, and W,
gq
X ! I |

B Embedded sentence

32

https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html

Multi-head attention

» The concept of multi-head attention is similar to using

multiple kernels in CNNs.

Y

J—

h heads [N
/of -

[Scaled-dot-pmduct attention

_—
4= :
[
@ K 1%
X
KK\
X Wor--- W Wi ... W“T W,... Wl
-H-‘-'H_‘"-\-\..___
33 Embedded sentence

- @)
[1z

https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html

Cross attention vs. self attention

» Mixing two input sequences
Can have different lengths

Cross-attention

Encoder

In encoder-decoder transformer, cross attention

Nx

is used to relate the encoder output to decoder.

Decoder

S,
dq dq L
Embedding d, _ e m—
size i — T >
d I wT > Q I w‘! n Q
e q n “new* v
Embeddi
number m ;:edmg
of tokens n X d dq n
d=d ldfl‘l m - dk :d({ ry
[inputs 1] k — g
1—»" r;l_:mkber n x I wI - K » QKT | »
T . T of tokens
‘ W || & — || o 4@) " @
Ve m oo d, L
oftglkhi;ns m| X2 new d“ , d,
br dy \. A — n A
> n T
= | v
A v Y
new m
d, 4
d,} -,
—
V/
n z n

Cross attention ' Self attention

Masked attention

» In the decoder block, the self-attention mechanism is
masked.

The causal self-attention
» To impose a causal structure to the model, the attention
mechanism can only consider previous elements of the
sequence.
Blocking paths to the future!

ODOEEEE Transformer
OO0 NN Z
HijEE} |

0000 =

D D D D D ransformer

sos||s,|]|s ||s, ||eos

. attend to left context

o

35

Transformer

» Residual connection
» Layer normalization

Z — [
LayerNorm(z;~, 3) = 1 (2= 112) + 3
Oz
1 k 1 k
ﬁfzkzzi- Oz — AZL(ZL [iz)?
1= 1=

36

4 N\
Add & Norm

Output

Probabilities

Linear

4 B
Add & Norm

Feed
Forward

Add & Norm

Multi-Head
Feed Attention
Forward
—

T} Nx

5—»[Add & Norm I Masked
Multi-Head Multi-Head
Attention Attention
At 1t
k_ J \ _)J
Positional Positional
Encodi D & <
ncoding y Encoding
Input Qutput
Embedding Embedding
Inputs Outputs

(shifted right)

Positional encoding in transformers

» Up to now, we have considered the input as a bag of
words.
» The transformer model does not have an inbuilt recurrent

Qutput
Probabilities

architecture like RNNs.

» Therefore, the positional information is directly

Linear

added to the input to impose the knowledge
of the order of objects in a sequence. — |
J q ﬁl&d,:&'toﬂ] Mu\ti-lead
Learning an embedding Forward ‘ S N
Using an embedding function v | D | |
\Attention . . Attention}
Cosers () O s
ﬁgduftjing Er‘r%]etg(%
37 Iinuts OutTputs

(shifted right)

Positional encoding in transformers

» Different ways:

One-hot encoding of the position in vector e
x ERT™4 eecRT - x'=(xe), x'€RTXT+d)

Learning a combined representation
x €ERT™*4 eeRT — x'=WTReLUW/[x + W] e)

Building distinct representations of inputs and positions
x € RT™*4 e € RT - x' = W' ReLUW,} x) + W) ReLU(W,\ e)

The original transformer paper proposes a fixed representation
of positions p; using sin and cos functions

x € RT™X4 - x' = W]IReLUW,x) +p

38

Positional encoding in transformers

» Sin and cos functions for fixed positional embedding:

39

Index Positional Encoding
Sequence of token, Matbrix with d=4, n=100
e i=0 i=0 i=1 i=1

. . k 0 Poo=sin(0) Po1=cos(0) Po2=sin(0) Pos=cos(0)
J— — > =0 =1 =0 =1

—_— P1o=sin(1/1) | P11=cos(1/1) Pi2=sin(1/10) Pi3=cos(1/10)
nd am — 1 = _gg4 = 0.54 = 0.10 = 1.0

20
nd

k: position an element

. k P2o=sin(2/1) | Pz1=cos(2/1) Pz22=sin(2/10) P23=cos(2/10)
p(k,2i +1) = cos(. A e e e
)

—, Pao=sin(3/1) | Pai=cos(3/1) Pa»=sin(3/10) Pas=cos(3/10)
Robot —»| 3 = 0.14 = -0.99 = 0.30 = 0.96

Positional Encoding Mabrix for the sequence ‘I am a robot’

d: dimension of the embedding space

n: user defined scalar (10000 in the main paper)
d

i: used for mapping to column indices; 0 < i < >

https://machinelearningmastery.com/a-gentle-introduction-to-positional-
encoding-in-transformer-models-part-1/

i=1

Positional encoding in transformers

» Sin and cos functions for fixed positional embedding:

Different frequencies in this embedding helps the model to
consider long and short term dependencies in the sequence.

Consider the sentence - "King and Queen are walking on the road.”

1 ~——

King Queen

40

/lzz_b‘-ch—\ ‘/0—

M{‘W\

K'Ing Road

The transformer function

A transformer block is a parameterized function class fy : RP*4 — RPX4 [f x € RP*? then
fo(x) = z where

QM (xi) = Wil xi, KW (x;) =W ixi, VIW(x) =W xi. Wi Wip Whp € RPF (1)

o.-g) — softmax; (<Q(h}(Xi)\‘/§(h) (XJD) .- (2)
H p

wp =S w3 vt (x)). Wop € RF*4, (3)
h=1 j=1

u; = LayerNorm(x; + u}; 71, 1), v1. 501 € R, (4)

zZ, = "1--”EReLLT(‘-'1--’fu.i). Wy € R>™ W, € R™*4. (5)

z; = LayerNorm(u; + z;; v2. 32), 2, B2 € R. (6)

41

Transformer based LLMs

» Both encoder and decoder style transformer use the

same self-attention layers to encode tokens.
» Encoder is designed to learn embedding for
predictive modeling tasks like classification. ous

decoder

-

Probabilities
.
» In contrast, decoders are designed to
N\
generate new texts, ex. ﬁ— 3
Forward
answering user queries. i =il
Fcl):nep\?;jrd - Atte;tlon
Ny | ~(Add&Nom) Ad&i}ljm
encoder — V- ead Vit iz
At At
\O— _ —)
A s [
Input Output
Embedding Embedding
] 1
42 Inputs Outputs

(shifted right)

Transformer based LLMs

43

Different developed LLMS: orginal transtormer

Microsoft DeBERTa (2020)

BERT (2018
Encoder Google
ALBERT (2020)

Meta RoBERTa (2019)

GPT-J (2021
GPT-Neo (2021)
GPT-NeoX (2022)

Eleuther Al

(

GPT-NeoX 2.0 (2023)

Sparrow (2022)
Chinchilla (2022)

Decoder

CodeX (2021)
InstructGPT (2022)

Meta

Meta BART (2020)
Encoder-Decoder Flan-T5 (2022)
Google Flan-UL2 (2023)
T5 (2022)

Encoder-decoder transformer
example

» Main transformer paper
Developed for the translation task

Encoder

s

Multi-head
attention

Masked Multi-head

attention

44

Encoder-decoder transformer
example

» Encoder-decoder models are typically used for natural
language processing tasks that involve understanding
input sequences and generating output sequences, often
with different lengths and structures.

» They are particularly good at tasks where there is a
complex mapping between the input and output
sequences and where it is crucial to capture the
relationships between the elements in both sequences.

» Some common use cases for encoder-decoder models
include text translation and summarization.

45

Encoder-decoder transformer

example

» Main transformer paper

—
cen Af—

HOM
ezjesiage

f—
—

- Decoder

Encoder

— ISEpN>
«— fsep>
«— 9Z19518q9N
+— <ue)s>

< piom

«— Ag

«— plom

< 3]e|SUB.|

ven —
Jon] «—
HON, <+
971951809 +—

- N -

azZyasiagen

-—
-~
-+

==p Decoder

Encoder

— SEN>
< fsep>
<+ ISEN>
<+ <JEe}s>

- PiOMm

+— Aqg

«— piom

<+— 9je|suel]

HOM «—
jen) «+—

HOM, *+—
8z19s81809 <—

= Decoder

Encoder

=p Decoder

Encoder

4 <NSEN>
< MOM

<+ 98z7)9si908N
«— <upiS>

<« plom
«— fg

«— pIOM

<« alBjsuel|

-« Jany
<« HOM

<— 8z)9s19q9(
<« <uBis>

-« Plom

+— Aq

«— plom

< ale|suel]

46

Decoder only transformer
example

» GPT: Generative Pretrained Transformer

G PT."I Text prediction

[i

Transformer block
Layer norm

Feed forward
12x+ 1

Layer norm

Multi self-attention

Text and position embeddings

L J
T
512 tokens
GPT-2 GPT-3
Text prediction Text prediction
- 1 3 t
. ! Transformer block Transformer block
H Feed forward Feed forward
Layer norm Layer norm
48x+: 96X -
Mulli self-attention > Multi self-attention
t H t
> Layer norm : Layer norm
- 1 - : *
=——_,"- : —
Alternate :
Text and position embeddings sparse_ ¢ Text and position embeddings
and
- ~ ! dense " +)
1024 tokens 2048 tokens

47

Decoder only transformer
example

» GPT: Generative Pretrained Transformer

» One of the most notable aspects of GPT models is their
emergent properties. Even though these models were
only taught to predict the next word, the pretrained
models are capable of text summarization, translation,
qguestion answering, classification, and more.

48

Encoder only transformer
example

» BERT: Bidirectional Encoder Representations
from Transformers

» Pretrained on a large text corpus using

Masked language modeling

Next-sentence prediction
Masked language modeling

Input sentence: The curious kitten deftly climbed the bookshelf

|

€@ Pick 15% of the words randomly

™

The curious kitten deftly climbed the bookshelf

/

o * 80% of the time, replace with [MASK] token
* 10% of the time, replace with random token (e.g. ate)
* 10% of the time, keep unchanged

49 Modified sentence: The curious kitten deftly [MASK] the bookshelf

Encoder only transformer
example

» Next-sentence prediction

Asks the model to predict whether the original document's sentence order
of two randomly shuffled sentences is correct.

[CLS] Toast is a simple yet delicious food [SEP] It’s often served with butter, jam, or honey.
[CLS] It’s often served with butter, jam, or honey. [SEP] Toast is a simple yet delicious food.

» The [CLS] token is a placeholder token for the model, prompting the model
to return a True or False label indicating whether the sentences are in the
correct order or not.

» These two loss functions allow BERT to learn rich contextual
representations of the input texts, which can then be finetuned for various
downstream tasks like sentiment analysis, question-answering, and named
entity recognition.

50

	Slide 1
	Slide 2: Recap
	Slide 3: PGMs Vs. Deep neural networks
	Slide 4: Deep neural networks for classification
	Slide 5: Autoregressive models
	Slide 6: Fully Visible Sigmoid Belief Network (FVSBN)
	Slide 7: Fully Visible Sigmoid Belief Network (FVSBN)
	Slide 8: NADE: Neural Autoregressive Density Estimation
	Slide 9: NADE results
	Slide 10: General discrete distributions
	Slide 11: RNADE
	Slide 12: Autoregressive models vs. autoencoders
	Slide 13: MADE: Masked Autoencoder for Distribution Estimation
	Slide 14: RNN: Recurrent neural nets
	Slide 15: RNN: Recurrent neural nets
	Slide 16: RNN: Recurrent neural nets
	Slide 17: PixelRNN
	Slide 18: PixelRNN
	Slide 19: PixelCNN
	Slide 20: PixelCNN
	Slide 21: Adversarial attack and anomaly detection
	Slide 22: PixelDefend
	Slide 23: Attention mechanism
	Slide 24: Transformer
	Slide 25: Transformer
	Slide 26: Transformer
	Slide 27: Transformer
	Slide 28: Self-attention in transformers
	Slide 29: Self-attention in transformers
	Slide 30: Self-attention in transformers
	Slide 31: Self-attention in transformers
	Slide 32: Multi-head attention
	Slide 33: Multi-head attention
	Slide 34: Cross attention vs. self attention
	Slide 35: Masked attention
	Slide 36: Transformer
	Slide 37: Positional encoding in transformers
	Slide 38: Positional encoding in transformers
	Slide 39: Positional encoding in transformers
	Slide 40: Positional encoding in transformers
	Slide 41: The transformer function
	Slide 42: Transformer based LLMs
	Slide 43: Transformer based LLMs
	Slide 44: Encoder-decoder transformer example
	Slide 45: Encoder-decoder transformer example
	Slide 46: Encoder-decoder transformer example
	Slide 47: Decoder only transformer example
	Slide 48: Decoder only transformer example
	Slide 49: Encoder only transformer example
	Slide 50: Encoder only transformer example

