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» We need a framework to interact with distributions for statistical generative models.

Probabilistic generative models
Deep generative models
n
Autoregressive models po(x) = [T Po(Xi|x</)
Variational Autoencoders pg(X) = I po (X, Z)dz

Generative adversarial networks
Both AR and VAE model families attempted to minimize the KL divergence between model family

and data distribution, or equivalently attempt to maximize the likelihood.
In GAN we are going to use an alternative choice for the similarity measure between model

distribution and data distribution.



Maximizing the likelihood

M

f = argmax E log po(Xi), X1.X2, -+ . Xpm ~ Pdata(X)
0 .
=1

» Optimal statistical efficiency

Assume sufficient model capacity, such that there exists a
unique 0" that satisfy pg* = Da4tq-

The convergence of A to 8* when M — oo, is the fastest
among all statistical methods when using maximum likelihood
training.



Maximizing the likelihood

» For imperfect models, achieving high log-likelihoods might not
always imply good sample quality.

KLD MMD JSD

An isotropic Gaussian distribution was fit to data drawn from a mixture of
Gaussians by either minimizing KL divergence (KLD), maximum mean discrepancy
(MMD), or Jensen-Shannon divergence (JSD). The different fits demonstrate
different tradeoffs made by the three measures of distance between distributions.
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Implicit generative models

» Kind of probabilistic generative models without an explicit
likelihood function

» We use a likelihood-free approach to train these models
Training by comparing samples

® data ® data
model density model samples

A

Explicit models vs. implicit models



Learning by comparing samples

» We should define a distance(similarity) measure between
two distributions that:

Provides guarantees about learning the data distribution.

argmin D (pdatar Pe) = Pdata
Po

Can be evaluated only using samples from the data and model
distribution.

Are computationally cheap to evaluate.

» Many distributional distances and divergences fail to
satisfy the later two requirements



Learning by comparing samples

» The main approach to overcome these challenges is to
approximate the desired quantity through optimization

by introducing a comparison model, often called a
discriminator or a critic D, such that:

D(p*, q) = argmax F(D.p". q)
D

» where F is a functional that can be estimated using only

samples from p* (Pgatq) and q. One way is that it
depends on distributions only in expectations.

Therefore, it can be estimated using Monte Carlo estimation.



Learning by comparing samples

» As we usually use parametric functions (ex. Neural
networks) for both the model and discriminator.

» Therefore, by the following optimization we estimate the
distance measure D(p*, q¢p)

argmax g F (D¢- P.qe)

» Then, instead of optimizing the exact objective D(p* q4)

we use the tractable approximation provided through the
optimal D.



Generative adversarial networks
(Goodfellow GAN)

» A finite number of samples from the desired real
distribution is available: x{, x5, ..., xy =
z)
/

» Like VAEs, we consider a latent variable model Go
for the model generation process and attempt to

learn Gg. However, here we learn this function by
Comparing samples.



The Goodfellow GAN
The probabilistic classification view

» Assuming D(x) as a binary classifier which predicts
whether a given point x was sampled from the real
distribution or it is a fake sample from the generator Gg.

» A cross entropy loss to train this classifier:
Expaniall08 Dy (X)] + Exp, [log(1 — Dy(x))]

» We can see that the optimal discriminator for a fixed
generator Gy is:

p(x)
p(x) + po(x)
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The Goodfellow GAN
The objective function

» By substitution the optimal discriminator into the cross-
entropy loss, we have:

r 1 P(z) p'(x)
V¥ (qe, p™) = =K+« 5 |log + —E, (2 log(1 —
(o) = S Er@l8 ) @) T 2@l ) @
_ (=) 1 . qe(x) "
= 3L llos P*(ﬂ?)+qg(5ﬂ}] * 5 @ 08 )i g @ )| — 1082
2
1 p* + 16 1 0"+ qg ,
= EDKL (I? | 5 ) + §D[{L (f{e | 5 — log 2

= .JSD(p*,qe) — log 2
where JSD is the Jensen-Shannon divergence.
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The Goodfellow GAN

» This establishes a connection between optimal binary
classification and distributional divergences.

» By using binary classification, we were able to compute
the distributional divergence using only samples, which is
the important property needed for learning implicit
generative models

» We have turned an intractable estimation problem (how
to estimate the JSD divergence) into an optimization
problem (how to learn a classifier) which can be used to
approximate that divergence.
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The Goodfellow GAN

» With optimal discriminator, we attempt to find the
generative model Gy that minimizes the JSD divergence.

11'19111 JSD(p* qg) = 1119111 V*(qe, p*) + log 2
1

1
— 1119111 iEP*{m) log D™(x) + iE%(m} log(1 — D*(x)) + log 2
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Training procedure of GAN

Sample minibatch of m training points x(1). x(2) ... x(m) from D
Sample minibatch of m noise vectors z(1), z(2) z(M) from p,

Update the discriminator parameters @ by stochastic gradient ascent

1 ~ . -
Vs V(Go. Dy) = EV@ZUOg Dy (x1) + log(1 — Dy (Gy(2!")))]
=1

Update the generator parameters ¢ by stochastic gradient descent

R -
VoV(Gy. Dy) = -V ) log(1 — Dy(Ga(z'")))
=1

Repeat for fixed number of epochs
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Training convergence
» If G and D have enough capacity, and at each step of
training procedure, the discriminator is allowed to reach

its optimum for a specific Gy , and then pg is updated so
as to improve

Em"“pmrm [lﬂg D?r' (33)] + Em’“ps; [lﬂg(l o DE: (.'13) )]

then pg converges to p4¢4-

» Unrealistic assumptions ®
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Training convergence

» However, we do not have access to the optimal
discriminator and only we can approximate it with a
parametrized function: neural network D

No guarantee for convergence

In practice, the generator and discriminator loss keeps
oscillating during GAN training
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The min-max game

» The minmax game

min max V(Gy. Dy) = Ex~pyaiallog Dy(x)] + E,p(z)[log(1 — Dy (Go(z)))]

It is @ game not an optimization problem
It should reach to a Nash equilibria
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Example

» Which one is real?
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F-divergence

» Let f: R — R be a convex lower-semicontinuous function,
such that f(1) = 0. We define the f-divergence between
two distributions with densities p and g by:

\ [ plx)
D 1) = f T ( N ) da.
rp |l q N q(x)f 2(2)

» What’s interesting about f-divergence is that we can
construct a variational representation for it.

Alternating the integral to an optimization
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Convex lower-semicontinuous function

20



Fenchel duality

» The idea is to use the convex conjugate of the function f,
which is defined as follows:

f*(t) = sup{te — f(w)}.

» Fenchel duality: repeat application of the conjugate
operation to convex lower-semicontinuous function f
yields f** = f. Therefore, we have:

f(w) = sup{te — ()}
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Variational representation of F-divergence

» Using Fenchel duality, we obtain the variational
representation of the f-divergence.

Dy )| [ ateysup (£~ (o)
— / sup [tp(e) — [ (t)q(x)] dx
Jx t
= sup / (T (x)p(x) — fA(TL(x))g(x)) d
I'X—RJX
=| sup {E T'(r)— E f*(T(z))] .
T-X—R [T~P T~q
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F-GAN

estimation.

The dual form can be approximated using Monte Carlo

Assuming a parametric family of functions T¢ (ex. a

neural network) and the generator function gg, and a
valid f-divergence, the F-GAN objective is,

0 = arg minsup
0 ©

— arg min sup
0 ®

E T,(c)— E fmu:n]
TP TP

E T,(c)— E f*(Tplgo(z m].
| z~p zruq

Generator gy tries to minimize the divergence estimate

and discriminator T tries to tighten the lower bound
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F-divergence

distance or divergence

__ pilx)
Py (:ﬂ))

corresponding g(t) (t =

Bhattacharyya distance -
KIL-divergence
Symmetric KL-divergence
Hellinger distance
Total variation
Pearson divergence
Jensen-Shannon divergence

Vi
tlog(t)
tlog(t) — log(t)
(VE—1)°
t =1
(t —1)°

%(t]-:-g i1 + log t+1)
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The Goodfellow GAN as F-GAN

» The Goodfellow GAN is an instances of the f-GAN.
» Modified version of the Jensen-Shannon

o D+ q
2J5D(p, q) —log(4) = DkL (p ! > ! ) + Dxr, (Pg

b J; q) — log(4).

» The f-divergence:
f(r)=xlogxr—(x+1)log(x+1)
f*(f) — —10{_’_;(1 — (ift:].

» We can obtain the Goodfellow GAN :

e OF = arg;ninﬁup E logd,(r)+ E log(1l—dy(ge(2)))



Mode collapse and catastrophic forgetting

» In the case of mode collapse, the generator might focus
on producing only a limited set of outputs that it knows
will deceive the discriminator, completely ignoring other
parts of the data distribution.

» As the generator iterates over epochs, it starts to forget
the diversity it initially captured.

This happens because it gets reinforced to produce only
certain types of outputs that are effective in fooling the
discriminator.

. - - -

Step 0 Step 5k Step 10k Step 15k Step 20k
Target Source: Metzetal., 2017

26 The generator distribution keeps oscillating between different modes



The problem with KL divergence

» KL divergence problem:

When distributions' supports are different, the KL does not
defined.

As it consider the ratio of probability values, it shows a big
difference between wo distributions when one has a very
small value in even in a small region.
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Wasserstein GAN

» Earth-Mover (EM) distance (Wasserstein-1)

[1(B., B;) shows the set of all joint distributions whose
marginals are P. and P,, respectively.

WP Py) = venl(%ff )E(m & N’T[ ==l ] w\ / B

It is the cost of optimal transport between two distributions P.
and Fy.

Compare in this direction

, \ INut in this direction

28 Jeremy Kun, (blog post, 2018)



Example

» Consider z~U|0,1]
P, a distribution over (0, z)
Py a distribution over (0, z)

» Different distance measure for these two distributions:

W (Pg,Py) = |6,

log 2 if ##0,
0 it =0,

JS(Py,Pg) = {

too  ifO#£0,
0 if6=0,

K L(Py||Py) = KL(Py||Pg) = {

1 if0#0,
0 iff=0.

and 6(Py,Py) = {

29



Example

» Learning can not be done with the other distances and
divergences because the resulting loss function is not
even continuous.

» Comparing EM and JSD for different 6
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Kantorovich-Rubinstein Duality

» We can approximate the Wasserstein distance with its
dual form:

W(P,.,Pg) = sup Epwp, [f(z)] — Eznp,[f(2)]

I fllz<1

where the sup is over all 1-Lipschitz functions f: X - R.

» Considering a parameterized family of functions for f:

However, we need to be sure that this family satisfy the 1-
Lipschitz constraint.

The Lipschitz constraint is essentially that a function must have
a maximum gradient. The specific maximum gradient is a
hyperparameter.

31 wew Epnp, [fu(®)] = Eonp(z) [ fr(90(2)]



Constraint on the discriminator function

» The red line is a good discriminator but its gradient is
nearly 0 at most points. The cyan line is clearly much
worse as a discriminator, but is much better for training
the generator because its gradient is not zero.

» The Lipschitz constraint limits the discriminator function

1.0

", — Density of real
08 | Density of fake
' | —  GAN Discriminator

| WGAN Critic
0.6 |

0.4

0.2}

0.0

-0.2 Vanishing gradients
in regular GAN
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Lipschitz constraint

» Quick and dirty solution: clamp the size of the weights

—c<W<c
» Or clipping the gradient.

» However, a better solution is to add a soft penalty to the loss
function as follows: (WGAN-GP)

E [D@)]—- E [D@)]+X E [(|[VaD(@)]l2 —1)?]
xz~P, x~P, x~F;
Uriginaltritic loss Our gradi:lt penalty

Where X is uniformly sampled from the line between samples of
two distributions
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