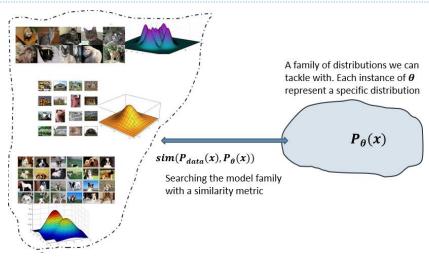
Generative adversarial networks

22-808: Generative models Sharif University of Technology Fall 2025

Fatemeh Seyyedsalehi

Recap



- We need a framework to interact with distributions for statistical generative models.
 - Probabilistic generative models
 - Deep generative models
 - Autoregressive models $p_{\theta}(\mathbf{x}) = \prod_{i=1}^{n} p_{\theta}(x_i | \mathbf{x}_{< i})$
 - Variational Autoencoders $p_{\theta}(\mathbf{x}) = \int p_{\theta}(\mathbf{x}, \mathbf{z}) d\mathbf{z}$
 - Generative adversarial networks
 - Both AR and VAE model families attempted to minimize the KL divergence between model family and data distribution, or equivalently attempt to maximize the likelihood.
 - In GAN we are going to use an alternative choice for the similarity measure between model distribution and data distribution.

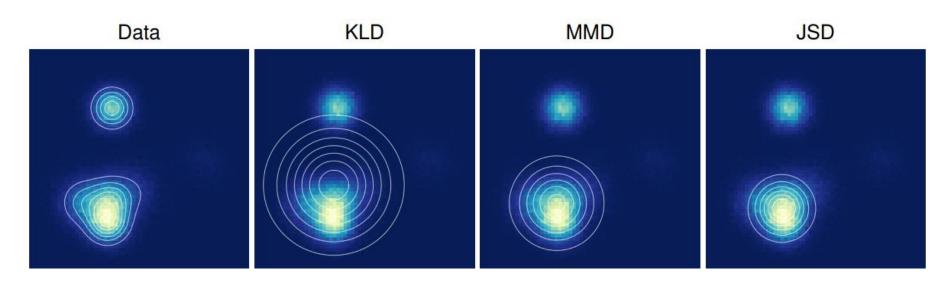
Maximizing the likelihood

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{M} \log p_{\theta}(\mathbf{x}_i), \quad \mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_M \sim p_{\mathsf{data}}(\mathbf{x})$$

- Optimal statistical efficiency
 - Assume sufficient model capacity, such that there exists a unique θ^* that satisfy $p_{\theta^*}=p_{data}$.
 - The convergence of $\hat{\theta}$ to θ^* when $M \to \infty$, is the fastest among all statistical methods when using maximum likelihood training.

Maximizing the likelihood

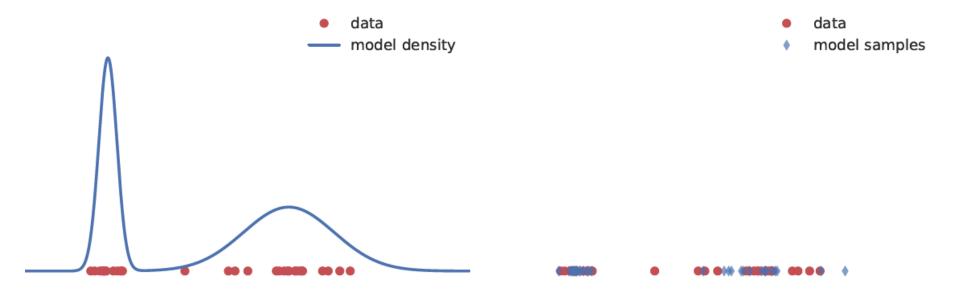
For imperfect models, achieving high log-likelihoods might not always imply good sample quality.



An isotropic Gaussian distribution was fit to data drawn from a mixture of Gaussians by either minimizing KL divergence (KLD), maximum mean discrepancy (MMD), or Jensen-Shannon divergence (JSD). The different fits demonstrate different tradeoffs made by the three measures of distance between distributions.

Implicit generative models

- Kind of probabilistic generative models without an explicit likelihood function
- We use a likelihood-free approach to train these models
 - Training by comparing samples



Explicit models vs. implicit models

Learning by comparing samples

- We should define a distance(similarity) measure between two distributions that:
 - Provides guarantees about learning the data distribution.

$$\underset{p_{\theta}}{\operatorname{argmin}} D(p_{data}, p_{\theta}) = p_{data}$$

- Can be evaluated only using samples from the data and model distribution.
- Are computationally cheap to evaluate.
- Many distributional distances and divergences fail to satisfy the later two requirements

Learning by comparing samples

▶ The main approach to overcome these challenges is to approximate the desired quantity through optimization by introducing a comparison model, often called a discriminator or a critic D, such that:

$$\mathcal{D}(p^*, q) = \operatorname*{argmax}_{D} \mathcal{F}(D, p^*, q)$$

- where \mathcal{F} is a functional that can be estimated using only samples from $p^*(p_{data})$ and q. One way is that it depends on distributions only in expectations.
 - ▶ Therefore, it can be estimated using Monte Carlo estimation.

Learning by comparing samples

- As we usually use parametric functions (ex. Neural networks) for both the model and discriminator.
- ▶ Therefore, by the following optimization we estimate the distance measure $\mathcal{D}(p^*, q_\theta)$

$$\operatorname{argmax}_{\boldsymbol{\phi}} \mathcal{F}(D_{\boldsymbol{\phi}}, p^*, q_{\boldsymbol{\theta}})$$

▶ Then, instead of optimizing the exact objective $\mathcal{D}(p^*,q_{\theta})$ we use the tractable approximation provided through the optimal D_{ϕ} .

Generative adversarial networks (Goodfellow GAN)

A finite number of samples from the desired real distribution is available: $x_1, x_2, ..., x_n$

 G_{θ}

Like VAEs, we consider a latent variable model for the model generation process and attempt to learn G_{θ} . However, here we learn this function by Comparing samples.

The Goodfellow GAN The probabilistic classification view

Assuming D(x) as a binary classifier which predicts whether a given point x was sampled from the real distribution or it is a fake sample from the generator G_{θ} .

A cross entropy loss to train this classifier:

$$E_{\mathbf{x} \sim p_{\text{data}}}[\log D_{\phi}(\mathbf{x})] + E_{\mathbf{x} \sim p_{\theta}}[\log(1 - D_{\phi}(\mathbf{x}))]$$

We can see that the optimal discriminator for a fixed generator G_{θ} is:

$$\frac{p(x)}{p(x) + p_{\theta}(x)}$$

The Goodfellow GAN The objective function

By substitution the optimal discriminator into the crossentropy loss, we have:

$$V^*(q_{\theta}, p^*) = \frac{1}{2} \mathbb{E}_{p^*(\boldsymbol{x})} [\log \frac{p^*(\boldsymbol{x})}{p^*(\boldsymbol{x}) + q_{\theta}(\boldsymbol{x})}] + \frac{1}{2} \mathbb{E}_{q_{\theta}(\boldsymbol{x})} [\log (1 - \frac{p^*(\boldsymbol{x})}{p^*(\boldsymbol{x}) + q_{\theta}(\boldsymbol{x})})]$$

$$= \frac{1}{2} \mathbb{E}_{p^*(\boldsymbol{x})} [\log \frac{p^*(\boldsymbol{x})}{\frac{p^*(\boldsymbol{x}) + q_{\theta}(\boldsymbol{x})}{2}}] + \frac{1}{2} \mathbb{E}_{q_{\theta}(\boldsymbol{x})} [\log (\frac{q_{\theta}(\boldsymbol{x})}{\frac{p^*(\boldsymbol{x}) + q_{\theta}(\boldsymbol{x})}{2}})] - \log 2$$

$$= \frac{1}{2} D_{\mathbb{KL}} \left(p^* \parallel \frac{p^* + q_{\theta}}{2} \right) + \frac{1}{2} D_{\mathbb{KL}} \left(q_{\theta} \parallel \frac{p^* + q_{\theta}}{2} \right) - \log 2$$

$$= JSD(p^*, q_{\theta}) - \log 2$$

where JSD is the Jensen-Shannon divergence.

The Goodfellow GAN

- ▶ This establishes a connection between optimal binary classification and distributional divergences.
- By using binary classification, we were able to compute the distributional divergence using only samples, which is the important property needed for learning implicit generative models
- We have turned an intractable estimation problem (how to estimate the JSD divergence) into an optimization problem (how to learn a classifier) which can be used to approximate that divergence.

The Goodfellow GAN

• With optimal discriminator, we attempt to find the generative model G_{θ} that minimizes the JSD divergence.

$$\min_{\boldsymbol{\theta}} JSD(p^*, q_{\boldsymbol{\theta}}) = \min_{\boldsymbol{\theta}} V^*(q_{\boldsymbol{\theta}}, p^*) + \log 2$$

$$= \min_{\boldsymbol{\theta}} \frac{1}{2} \mathbb{E}_{p^*(\boldsymbol{x})} \log D^*(\boldsymbol{x}) + \frac{1}{2} \mathbb{E}_{q_{\boldsymbol{\theta}}(\boldsymbol{x})} \log (1 - D^*(\boldsymbol{x})) + \log 2$$

Training procedure of GAN

Sample minibatch of m training points $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(m)}$ from \mathcal{D} Sample minibatch of m noise vectors $\mathbf{z}^{(1)}, \mathbf{z}^{(2)}, \dots, \mathbf{z}^{(m)}$ from p_z Update the discriminator parameters ϕ by stochastic gradient **ascent**

$$\nabla_{\phi} V(G_{\theta}, D_{\phi}) = \frac{1}{m} \nabla_{\phi} \sum_{i=1}^{m} [\log D_{\phi}(\mathbf{x}^{(i)}) + \log(1 - D_{\phi}(G_{\theta}(\mathbf{z}^{(i)})))]$$

Update the generator parameters θ by stochastic gradient **descent**

$$abla_{ heta}V(G_{ heta},D_{\phi})=rac{1}{m}
abla_{ heta}\sum_{i=1}^{m}\log(1-D_{\phi}(G_{ heta}(\mathbf{z}^{(i)})))$$

Repeat for fixed number of epochs

Training convergence

If G and D have enough capacity, and at each step of training procedure, the discriminator is allowed to reach its optimum for a specific G_{θ} , and then p_{θ} is updated so as to improve

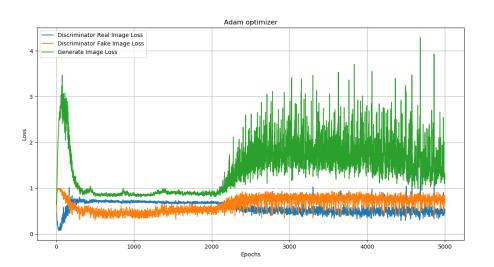
$$\mathbb{E}_{\boldsymbol{x} \sim p_{data}}[\log D_G^*(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{x} \sim p_g}[\log(1 - D_G^*(\boldsymbol{x}))]$$

then p_{θ} converges to p_{data} .

▶ Unrealistic assumptions ☺

Training convergence

- ▶ However, we do not have access to the optimal discriminator and only we can approximate it with a parametrized function: neural network D_{ϕ}
 - No guarantee for convergence
 - In practice, the generator and discriminator loss keeps oscillating during GAN training

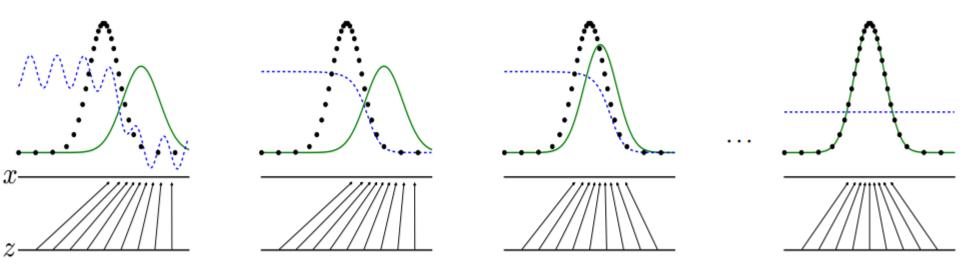


The min-max game

The minmax game

$$\min_{\theta} \max_{\phi} V(\textit{G}_{\theta}, \textit{D}_{\phi}) = \textit{E}_{\mathbf{x} \sim p_{\text{data}}}[\log \textit{D}_{\phi}(\mathbf{x})] + \textit{E}_{\mathbf{z} \sim p(\mathbf{z})}[\log(1 - \textit{D}_{\phi}(\textit{G}_{\theta}(\mathbf{z})))]$$

- It is a game not an optimization problem
- It should reach to a Nash equilibria



Example

Which one is real?

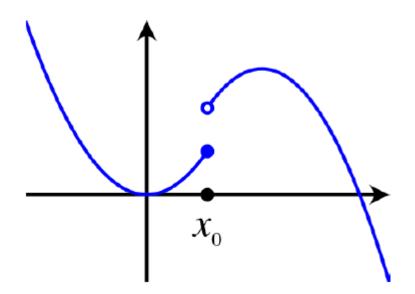
F-divergence

Let $f: R \to R$ be a convex lower-semicontinuous function, such that f(1) = 0. We define the *f-divergence* between two distributions with densities p and q by:

$$D_f(p \parallel q) \equiv \int_{\mathcal{X}} q(x) f\left(\frac{p(x)}{q(x)}\right) dx.$$

- ▶ What's interesting about *f-divergence* is that we can construct a variational representation for it.
 - Alternating the integral to an optimization

Convex lower-semicontinuous function



Fenchel duality

▶ The idea is to use the convex conjugate of the function f, which is defined as follows:

$$f^*(t) \equiv \sup_{x} \{tx - f(x)\}.$$

Fenchel duality: repeat application of the conjugate operation to convex lower-semicontinuous function f yields $f^{**} = f$. Therefore, we have:

$$f(x) = \sup_{t} \{tx - f^*(t)\}.$$

Variational representation of *F-divergence*

Using Fenchel duality, we obtain the variational representation of the f-divergence.

$$D_{f}(p \parallel q) = \int_{\mathcal{X}} q(x) \sup_{t} \left[t \frac{p(x)}{q(x)} - f^{*}(t) \right] dx$$

$$= \int_{\mathcal{X}} \sup_{t} \left[t p(x) - f^{*}(t) q(x) \right] dx$$

$$= \sup_{T: \mathcal{X} \to \mathbb{R}} \int_{\mathcal{X}} \left(T(x) p(x) - f^{*}(T(x)) q(x) \right) dx$$

$$= \sup_{T: \mathcal{X} \to \mathbb{R}} \left[\underset{x \sim p}{\mathbb{E}} T(x) - \underset{x \sim q}{\mathbb{E}} f^{*}(T(x)) \right].$$

F-GAN

- ▶ The dual form can be approximated using Monte Carlo estimation.
- Assuming a parametric family of functions $T\varphi$ (ex. a neural network) and the generator function g_{θ} , and a valid f-divergence, the F-GAN objective is,

$$\theta_f = \underset{\theta}{\operatorname{arg \,min \,sup}} \left[\underset{x \sim p}{\mathbb{E}} T_{\varphi}(x) - \underset{x \sim p_{\theta}}{\mathbb{E}} f^*(T_{\varphi}(x)) \right]$$
$$= \underset{\theta}{\operatorname{arg \,min \,sup}} \left[\underset{x \sim p}{\mathbb{E}} T_{\varphi}(x) - \underset{z \sim q}{\mathbb{E}} f^*(T_{\varphi}(g_{\theta}(z))) \right].$$

• Generator g_{θ} tries to minimize the divergence estimate and discriminator $T\varphi$ tries to tighten the lower bound

F-divergence

distance or divergence	corresponding $g(t)$ $(t = \frac{p_i(x)}{p_j(x)})$
Bhattacharyya distance ¹	\sqrt{t}
KL-divergence	$t \log(t)$
Symmetric KL-divergence	$t\log(t) - \log(t)$
Hellinger distance	$(\sqrt{t}-1)^2$
Total variation	t-1
Pearson divergence	$(t-1)^2$
Jensen-Shannon divergence	$\frac{1}{2}(t\log\frac{2t}{t+1} + \log\frac{2}{t+1})$

The Goodfellow GAN as F-GAN

- ▶ The Goodfellow GAN is an instances of the f-GAN.
- Modified version of the Jensen-Shannon

$$2JSD(p,q) - \log(4) = D_{KL}\left(p\left|\left|\frac{p+q}{2}\right|\right) + D_{KL}\left(p_g\left|\left|\frac{p+q}{2}\right|\right) - \log(4)\right).$$

▶ The *f-divergence*:

$$f(x) = x \log x - (x+1) \log(x+1)$$

$$f^*(t) = -\log(1 - e^t).$$

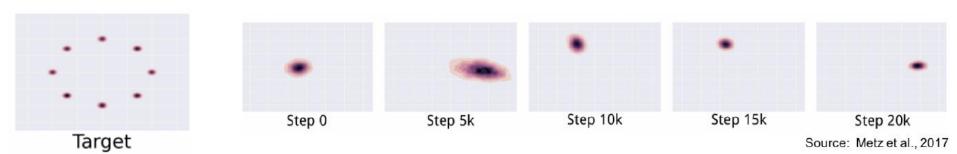
$$T_{\varphi}(x) = \log(d_{\varphi}(x))$$

We can obtain the Goodfellow GAN :

$$\theta_f = \arg\min_{\theta} \sup_{\varphi} \left[\mathbb{E}_{x \sim p} \log d_{\varphi}(x) + \mathbb{E}_{z \sim q} \log(1 - d_{\varphi}(g_{\theta}(z))) \right]$$

Mode collapse and catastrophic forgetting

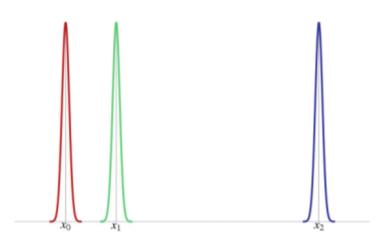
- In the case of mode collapse, the generator might focus on producing only a limited set of outputs that it knows will deceive the discriminator, completely ignoring other parts of the data distribution.
- As the generator iterates over epochs, it starts to forget the diversity it initially captured.
 - This happens because it gets reinforced to produce only certain types of outputs that are effective in fooling the discriminator.



The generator distribution keeps oscillating between different modes

The problem with KL divergence

- KL divergence problem:
 - When distributions' supports are different, the KL does not defined.
 - As it consider the ratio of probability values, it shows a big difference between wo distributions when one has a very small value in even in a small region.

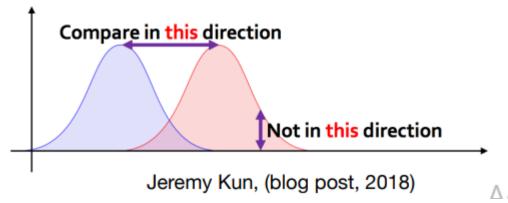


Wasserstein GAN

- Earth-Mover (EM) distance (Wasserstein-1)
 - $\Pi(P_r, P_g)$ shows the set of all joint distributions whose marginals are P_r and P_g , respectively.

$$W(\mathbb{P}_r, \mathbb{P}_g) = \inf_{\gamma \in \Pi(\mathbb{P}_r, \mathbb{P}_g)} \mathbb{E}_{(x,y) \sim \gamma} [\|x - y\|]$$

It is the cost of optimal transport between two distributions P_r and P_a .



Example

- \blacktriangleright Consider $z \sim U[0,1]$
 - $ightharpoonup P_0$ a distribution over (0, z)
 - P_{θ} a distribution over (θ, z)
- Different distance measure for these two distributions:

•
$$W(\mathbb{P}_0, \mathbb{P}_{\theta}) = |\theta|$$
,

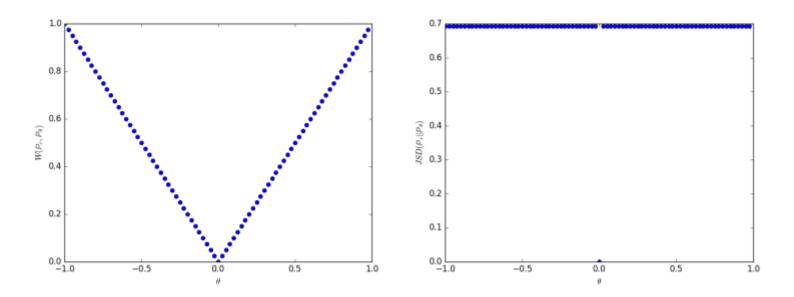
•
$$JS(\mathbb{P}_0, \mathbb{P}_{\theta}) = \begin{cases} \log 2 & \text{if } \theta \neq 0, \\ 0 & \text{if } \theta = 0, \end{cases}$$

•
$$KL(\mathbb{P}_{\theta}||\mathbb{P}_{0}) = KL(\mathbb{P}_{0}||\mathbb{P}_{\theta}) = \begin{cases} +\infty & \text{if } \theta \neq 0 , \\ 0 & \text{if } \theta = 0 , \end{cases}$$

• and
$$\delta(\mathbb{P}_0, \mathbb{P}_{\theta}) = \begin{cases} 1 & \text{if } \theta \neq 0, \\ 0 & \text{if } \theta = 0. \end{cases}$$

Example

- Learning can not be done with the other distances and divergences because the resulting loss function is not even continuous.
- lacktriangle Comparing EM and JSD for different heta



Kantorovich-Rubinstein Duality

We can approximate the Wasserstein distance with its dual form:

$$W(\mathbb{P}_r, \mathbb{P}_{\theta}) = \sup_{\|f\|_L \le 1} \mathbb{E}_{x \sim \mathbb{P}_r}[f(x)] - \mathbb{E}_{x \sim \mathbb{P}_{\theta}}[f(x)]$$

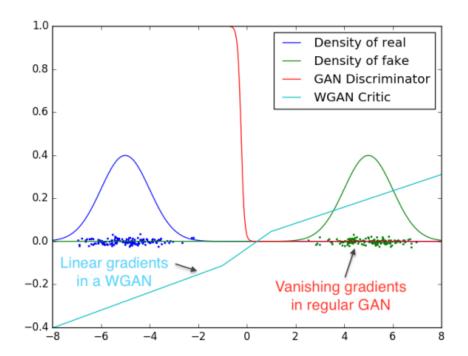
where the sup is over all 1-Lipschitz functions $f: X \rightarrow R$.

- Considering a parameterized family of functions for f:
 - However, we need to be sure that this family satisfy the 1-Lipschitz constraint.
 - The Lipschitz constraint is essentially that a function must have a maximum gradient. The specific maximum gradient is a hyperparameter.

$$\max_{w \in \mathcal{W}} \mathbb{E}_{x \sim \mathbb{P}_r} [f_w(x)] - \mathbb{E}_{z \sim p(z)} [f_w(g_\theta(z))]$$

Constraint on the discriminator function

- The red line is a good discriminator but its gradient is nearly 0 at most points. The cyan line is clearly much worse as a discriminator, but is much better for training the generator because its gradient is not zero.
- ▶ The Lipschitz constraint limits the discriminator function



Lipschitz constraint

Quick and dirty solution: clamp the size of the weights

$$-c < W < c$$

- Or clipping the gradient.
- However, a better solution is to add a soft penalty to the loss function as follows: (WGAN-GP)

$$\underbrace{ \underbrace{ \mathbb{E}_{\hat{\boldsymbol{x}} \sim \mathbb{P}_g} \left[D(\hat{\boldsymbol{x}}) \right] - \mathbb{E}_{\boldsymbol{x} \sim \mathbb{P}_r} \left[D(\boldsymbol{x}) \right] + \underbrace{ \lambda \mathop{\mathbb{E}_{\hat{\boldsymbol{x}} \sim \mathbb{P}_{\hat{\boldsymbol{x}}}} \left[(\|\nabla_{\hat{\boldsymbol{x}}} D(\hat{\boldsymbol{x}})\|_2 - 1)^2 \right]}_{\text{Our gradient penalty}}$$

Where \hat{x} is uniformly sampled from the line between samples of two distributions